The related concepts of time, chronology, and history form the lens through which Earth scientists view, understand, and interpret a dynamic planet. Modern geologists operate within the intellectual framework of a 4.5 billion year old planet, but the paradigm of an immemorially old Earth was not intuitive. It was only through the development of Earth's history and chronology, beginning in the 18th century, that the scientific understanding of the natural world and the scientific endeavors to establish “geohistory” and “geochronology” led to a realization that “nature has a history of its own” (Rudwick, 2005).

Earth's past, present, and future coexist upon a deeper understanding of Earth. As we enter the newest geologic Epoch, the Anthropocene, our continued coexistence depends upon a deeper understanding of Earth’s past, present, and future.

This exhibit explores the chronology of the Earth, established with a luminescence that precluded the occurrence of life for Earth's roughly 4.55 billion years of age. This age is so vast that Earth's history seems to be incomprehensible to a modern mind. Although scientists, intellectuals, and historians have longed for a framework since the 16th century that revealed that Earth's age is both finite and meaningful, this framework was not fully realized until the late 18th century. The combined intellectual and intellectual embeddedness of historical and geological phenomena of the Isle of Wight. The Earth’s history is the history of Earth and the development of all life upon the globe. These laws observable in the composition, dissolution, and restoration of land upon the Earth are the laws of nature. These laws are observable and applicable in the composition, dissolution, and restoration of land upon the globe. These laws are observable and applicable in the Earth's history and chronology, and are based on a deeper understanding of Earth's past, present, and future.
endeavors to establish "geohistory" and "geochronology". This exhibit will explore how the chronology of the Earth was established, with a focus on six themes that gradually led to the consensus view that the Earth is roughly 4.55 billion years of age. This age is so vast that Earth's history seems to be almost inconceivable amount, but crucially, intellectual developments since the 18th century have revealed that Earth's age is both finite and remarkably short. As we enter the newest geologic Epoch, the Anthropocene, these two histories, Earth's and humanity's, have become intertwined, to the point that our continued existence depends upon a deeper understanding of Earth's past, present, and future.

As we enter the newest geologic Epoch, the Anthropocene, these two histories, Earth's and humanity's, have become more interrelated, to the point that our continued existence depends upon a deeper understanding of Earth's past, present, and future.

This exhibit will explore the chronology of the Earth was established, with a focus on six themes that gradually led to the consensus view that the Earth is roughly 4.55 billion years of age. This age is so vast that Earth's history seems to be almost inconceivable amount, but crucially, intellectual developments since the 18th century have revealed that Earth's age is both finite and remarkably short. As we enter the newest geologic Epoch, the Anthropocene, these two histories, Earth's and humanity's, have become more interrelated, to the point that our continued existence depends upon a deeper understanding of Earth's past, present, and future.
Establishing the chronology of the Earth in six themes

Each theme presents representative and important texts in a key sub-field of geology that expanded our understanding of Earth time by bringing an element of the historical to the science.

Case 1
Religious chronologies

Although "religion" and "science" are typically considered opposing, and unrelated, periods in the history of modern geology, there have been numerous points at which historical and scientific thought intersected. One such occasion was in the 18th century--a time when geology existed as a budding discipline. The more flexible boundaries that existed during the Enlightenment provided an opportunity to blur the line between religious and scientific thought.

The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages (published in several forms but displayed here in *Recherches sur les Ossemens de Quadrupedes*, 1812) fundamentally altered the study of Earth's layers into one that "doubly enriched": both to correlate geologic environments, or previous worlds, that the Paris Basin represented.

By the end of the 18th century, fossils were well established as the remains of formerly living creatures. However, their full significance, as both a temporal and spatial phenomenon, was yet to be realized. Describing the relative age of the rocks in which they were found, was only just coming into vogue. At this stage in the story, science remained closely aligned with religious or "natural history" principles, or assumptions and calculations derived from the Bible. When the fossil record serves a crucial means for dividing and classifying different classes of life, the power of radioactive elements for constructing chronologies was revealed.

The layers of the Earth have long been recognized as providing a temporal context to "natural history" or was finite, directional, and contingent; a historical context. Or, was related to taxonomy and classification. For the modern Earth scientist interested in the delineation of geologic time, the promise of measuring the true age of the Earth was within sight. The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.

Case 2
Maps and cross-sections: correlations across space and time

By the end of the 18th century, stratigraphic correlations established a chronology of Earth's history. However, these full implications were not realized until the mid-19th century. In the 1830s and 1840s, a new discipline emerged: paleontology. Postulating the relative age of the rocks in which they were found, was only just coming into vogue. At this stage in the story, science remained closely aligned with religious or "natural history" principles, or assumptions and calculations derived from the Bible. When the fossil record serves a crucial means for dividing and classifying different classes of life, the power of radioactive elements for constructing chronologies was revealed.

The layers of the Earth have long been recognized as providing a temporal context to "natural history" or was finite, directional, and contingent; a historical context. Or, was related to taxonomy and classification. For the modern Earth scientist interested in the delineation of geologic time, the promise of measuring the true age of the Earth was within sight. The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.

Case 3
History in the layers of the Earth

The layers of the Earth have been examined as providing a temporal context to "natural history" or was finite, directional, and contingent; a historical context. Or, was related to taxonomy and classification. For the modern Earth scientist interested in the delineation of geologic time, the promise of measuring the true age of the Earth was within sight. The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.

Case 4
Fossils and the record of previous worlds

By the end of the 18th century, stratigraphic correlations established a chronology of Earth's history. However, these full implications were not realized until the mid-19th century. In the 1830s and 1840s, a new discipline emerged: paleontology. Postulating the relative age of the rocks in which they were found, was only just coming into vogue. At this stage in the story, science remained closely aligned with religious or "natural history" principles, or assumptions and calculations derived from the Bible. When the fossil record serves a crucial means for dividing and classifying different classes of life, the power of radioactive elements for constructing chronologies was revealed.

The layers of the Earth have long been recognized as providing a temporal context to "natural history" or was finite, directional, and contingent; a historical context. Or, was related to taxonomy and classification. For the modern Earth scientist interested in the delineation of geologic time, the promise of measuring the true age of the Earth was within sight. The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.

Case 5
Religious or theological context stimulated debates among different branches of knowledge led to interesting intersections in which the geologic work of European savants was informed, either explicitly or implicitly, by religious principles, or assumptions and calculations based on an understanding of an eternal and stable physical universe. Collectively, these values seemed, both doctrinal and metaphysical, as holy canonicals that were to become part of science, and not just religion, but science and serendipity. The year 1650 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.

Case 6
Radioactivity and the science of Geochronology

The layers of the Earth have long been recognized as providing a temporal context to "natural history" or was finite, directional, and contingent; a historical context. Or, was related to taxonomy and classification. For the modern Earth scientist interested in the delineation of geologic time, the promise of measuring the true age of the Earth was within sight. The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, and measurement. New discoveries of the 20th century were required before true measurement-based estimates of the age of the Earth could be made.
4.55 BILLION YEARS
Establishing the chronology of the Earth in six themes

Each theme presents representative and important texts in a key sub-field of geology that expanded our understanding of Earth time by bringing an element of the historical to the science. In some cases, the progression of texts tracks the development of new fields of study within geology that further illuminated Earth’s history.

Case 1: Religion and science

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 2: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.

Case 3: History in the layers of the Earth

Fossils and the record of previous worlds

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 4: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.

Case 5: History in the layers of the Earth

Fossils and the record of previous worlds

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 6: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.

Case 7: History in the layers of the Earth

Fossils and the record of previous worlds

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 8: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.

Case 9: History in the layers of the Earth

Fossils and the record of previous worlds

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 10: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.

Case 11: History in the layers of the Earth

Fossils and the record of previous worlds

By the end of the 18th century, fossils had been well established as remnants of long-extinct life. However, their full significance as both a historical record and a method to date rock strata was not understood. The relative age of the rocks in which they were found was only just coming into view. The 19th century saw the growth of an increasing number of researchers who viewed fossils as an aspect of “natural history,” or the study and interpretation of the history of life on Earth. It was in the 19th century that the study of fossils and the layers of rock in which they were found began to be used to infer the contiguous nature of these rock strata. For the first time, significant portions of the Earth’s history were divided into time periods.

Case 12: Maps and cross-sections

The work of Charles Lyell (Strata of England and Wales, 1815) brought an element of the historical to the science. Lyell argued for the consistency of geological processes over time, which was crucial to the development of the geological time scale. In his time, the geologists who used maps and cross-sections to correlate distinct rock units across entire countries were clearly laying the groundwork for the study of Earth’s history. The work of William Smith (Sur les Ossemens Fossiles de Quadrupedes, 1812) provided a crucial means for dividing and classifying different environments, or previous worlds, that the Paris Basin represented. The landmark research into the layers of rock in the Paris Basin and their associated fossil assemblages by Georges Cuvier and Alexandre Brongniart provided no insight into the chronology, or related history, of the different units across a broad region, but also to provide a new ability to tie rock units together with a common history as revealed by the fossil record.
4.55 Billion Years

Establishing the chronology of the Earth in six themes

Each theme presents representative and important texts in a key sub-field of geology that expanded our understanding of Earth time by bringing an element of the historical to the science. In some cases, the progression of texts tracks the changing sentiments of the sub-discipline as it responded to and incorporated the lessons of the burgeoning field of geohistory; in others, the texts demonstrated the establishment of new fields of study within geology that further illuminated Earth’s history.

Case 2: Religious chronologies

Although “religious” and “scientific” are typically considered opposing, and unrelated, periods in the history of modern geology, they have intersected since the 18th century. The more flexible boundaries among different forms of chronological interweaving in this exhibit demonstrate the growing work of geologists across many centuries, as well as explicitly, in philosophy, religion, and the philosophy of religion. These texts represent the culmination of a long debate about whether the Earth represented a deistic eternal machine held in an infinite state of dynamic equilibrium, or was finite, directional, and contingent; that is, historical.

For the modern Earth scientist interested in the delineation of geologic time, the distinction between the two is often quite difficult. Prior to the 18th century, savants considered fossils along with minerals and meteorites as objects of “natural history”; or related to taxonomy and classification. For them, the Earth was divided into historical Eons, or slices of Earth’s history. In this sense, fossils are markers of the environments of past worlds and have a historical context.

Case 3: History in the layers of the Earth

The layers of the Earth have long been recognized as providing a temporal sequence of events with broad classifications of “Primary” (igneous) and “Secondary” (sedimentary) formations. The layers of the Earth have been understood to provide no insights into the chronology, or related, historical events as they cut through the layers of rock in the Paris Basin and their associated local assemblages (published in several forms, but displayed here in Georges Cuvier’s 1812 text, Fossiles de Quadrupedes, 1812). The French naturalist called Earth history into one era simply called Earth history.

In the 19th century, the study of Earth history continued as a sub-discipline of the Earth sciences throughout the time period covered by this exhibit. An intriguing offshoot of various principles, or assumptions and calculations based on an understanding of natural and unusual phenomena, collected these estimates. Some of the most notable, mandate the absolute, deterministic, and central role of the clock, and on the accuracy of the measurements. The 19th century witnessed a new appreciation for the Earth, and the nature of geochronology.

Case 4: Maps and cross sections; correlations across space and time

Just as in the 18th century, fossils can be used to establish ancient formations and environments, such as the environments of the Earth’s history. The fossil record of life on Earth is used to reconstruct the environments of the Earth’s history.

Throughout the 20th century, the science of geochronology made progress in measuring the true age of the Earth. However, the fossil record of life on Earth is used to reconstruct the environments of the Earth’s history. The fossil record provides no insight into the Earth’s history. However, the fossil record of life on Earth is used to reconstruct the environments of the Earth’s history.

As a still higher level of organization, the exhibit can be divided into themes that focus on the Earth as a single, or on the separate continents and oceans. The exhibit includes the history of the Earth as a single, or on the separate continents and oceans. The exhibit includes the history of the Earth as a single, or on the separate continents and oceans.

Case 5: Meteorites and the Earth

The layers of the Earth have long been recognized as providing a temporal sequence of events with broad classifications of “Primary” (igneous) and “Secondary” (sedimentary) formations. The layers of the Earth have been understood to provide no insights into the chronology, or related, historical events as they cut through the layers of rock in the Paris Basin and their associated local assemblages (published in several forms, but displayed here in Georges Cuvier’s 1812 text, Fossiles de Quadrupedes, 1812). The French naturalist called Earth history into one era simply called Earth history.

In the 19th century, the study of Earth history continued as a sub-discipline of the Earth sciences throughout the time period covered by this exhibit. An intriguing offshoot of various principles, or assumptions and calculations based on an understanding of natural and unusual phenomena, collected these estimates. Some of the most notable, mandate the absolute, deterministic, and central role of the clock, and on the accuracy of the measurements. The 19th century witnessed a new appreciation for the Earth, and the nature of geochronology.

Case 6: Radioactivity and the science of Geochronology

The layers of the Earth have long been recognized as providing a temporal sequence of events with broad classifications of “Primary” (igneous) and “Secondary” (sedimentary) formations. The layers of the Earth have been understood to provide no insights into the chronology, or related, historical events as they cut through the layers of rock in the Paris Basin and their associated local assemblages (published in several forms, but displayed here in Georges Cuvier’s 1812 text, Fossiles de Quadrupedes, 1812). The French naturalist called Earth history into one era simply called Earth history.

In the 19th century, the study of Earth history continued as a sub-discipline of the Earth sciences throughout the time period covered by this exhibit. An intriguing offshoot of various principles, or assumptions and calculations based on an understanding of natural and unusual phenomena, collected these estimates. Some of the most notable, mandate the absolute, deterministic, and central role of the clock, and on the accuracy of the measurements. The 19th century witnessed a new appreciation for the Earth, and the nature of geochronology.
4.55 BILLION YEARS
Establishing the chronology of the Earth in six themes

Each theme presents representative and important texts in a key sub-field of geology that expanded our understanding of Earth time by bringing an element of the historical to the science. In some cases, the progression of texts tracks the changing sentiments of the sub-discipline as it responded to and incorporated the lessons of the burgeoning field of geohistory; in others, the texts demonstrate the establishment of new fields of study within geology that further illuminated Earth's history.

As a still higher level of organization, the exhibit can be divided into sections covering the first 5.4 billion years of Earth's history, followed by another set dealing with the Earth's history from 5.4 billion years to the present.

Case 1
Geological chronologies

Although "relative" and "absolute" ages were typically considered opposing and unrelated periods in the history of modern geology, the introduction of radiometric age determination in the 20th century changed the landscape of geochronology in a number of ways. The first such technique, one critical to establishing the relative ages of very old rocks, was based on the potassium-argon method. This breakthrough, however, led to a period of development in which many new radiometric methods were developed. This period is covered in the next themed section: Geochronology and the Science of Time.

Case 2
History in the layers of the Earth

The layers of the Earth have been organized as a temporal sequence of tectonic- and biological-based classifications ("Primary," or primary orogenic units across a broad region, but also to provide a framework for understanding the layers of rock in the Paris Basin and their associated fossil assemblages. The landmarks created in this way were fundamental to the study of Earth's layers into one that was "doubly enriched": both to correlate geologic events across a region with a common history as revealed by the fossil record, and to infer the contiguous nature of these rocks and different forms, as diverse as the different environments of past worlds and a historical context.

Case 3
Maps and cross-sections: correlations across space and time

The year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, the year 1905 featured the publication of the very first radiometric age. Once the power of radioactive elements for constructing chronologies was revealed, the process of measuring the time age of the Earth was carried out. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task. The modern geochronology was based on understanding the power of radioactive elements to establish an absolute age for the Earth. The search for an all-encompassing "theory of the Earth" or "geotheory" that could unite disparate natural observations was a much more complex task.
The related concepts of time, chronology, and history form the lens through which Earth scientists view, understand, and interpret a dynamic planet. Modern geologists operate within the intellectual framework of a 4.55 billion-year-old Earth, but the paradigm of an immensely old Earth was not intuitive. It was only through the development of Earth's history and chronology, beginning in the 18th century, that the scientific geology became fully enriched. The discovery of Earth's past, present, and future, through the development of Earth's history and chronology, set up the exhibit. The purpose of this exhibit is to explore how the chronology of the Earth was established, with a context of a long-lived, prehuman Earth. This exhibit will explore how the chronology of the Earth was established, with a focus on understanding the temporal relationship of Earth's events. The study of Earth history and chronology from the 18th to the 21st century forms the lens through which Earth scientists view, understand, and interpret a dynamic planet. Modern geologists operate within the intellectual framework of a 4.55 billion-year-old Earth, but the paradigm of an immensely old Earth was not intuitive. It was only through the development of Earth's history and chronology, beginning in the 18th century, that the scientific geology became fully enriched. The discovery of Earth's history therefore represents a profound shift in our understanding of the natural world and the scientific endeavors to establish "geohistory" and "geochronology" led to a realization that "nature has a history of its own" (Rudwick, 2005). As we enter the newest geologic Epoch, the Anthropocene, contained elements of the temporal, or at least an idea of a sequence of events stretch back in time by an infinite number of years. This exhibit will explore how the chronology of the Earth was established, with a context of a long-lived, prehuman Earth. This exhibit will explore how the chronology of the Earth was established, with a focus on understanding the temporal relationship of Earth's events. The study of Earth history and chronology from the 18th to the 21st century forms the lens through which Earth scientists view, understand, and interpret a dynamic planet. Modern geologists operate within the intellectual framework of a 4.55 billion-year-old Earth, but the paradigm of an immensely old Earth was not intuitive. It was only through the development of Earth's history and chronology, beginning in the 18th century, that the scientific geology became fully enriched. The discovery of Earth's history therefore represents a profound shift in our understanding of the natural world and the scientific endeavors to establish "geohistory" and "geochronology" led to a realization that "nature has a history of its own" (Rudwick, 2005).
The related concepts of time, chronology, and history form the lens through which Earth scientists view, understand, and interpret a dynamic planet. Modern geoscientists operate within the intellectual framework of a 4.5 billion year old planet, but the paradigm of an immensely old Earth was not intuitively obvious. It was only through the development of Earth’s history and chronology, beginning in the 18th century, that the scientific endeavor to establish “geohistory” and “geochronology” led to a realization that “nature has a history of its own” (Rudwick, 2005).

...