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(Haken on 3himamotc's cemstrmotion; Octoher 20, 1971)
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Special ecnventions:

/ Graph: finite, planar, non-orismted grepk witbout loop-edged, O

/ Triangulation: Graph ns above uhish csn he enbodded into the 2-gphers
weseeSoS=ecsc  4n such s way that esch connected ocomponent of
2-gphers minus graph 1 a Syriangle.

d 4-ooloration: Aesignment of wue of Pour eolors, namad 1,2,3,4, to dach
messssmesss vertex of a graph so that any twc vertices which are
joined by sz sé¢ge (of the graph) vbtain different cclers.

[/ Crisical greph: Graph as above whieh 1) doms not admit a 4-coloration
eesesmeeee i) has tae propsziy that if ocne arbitrary edge is sub-
tracted then a 4-colorable graph is obtained.

'(/ Uinipal trisnguistion: Triangelsiion whish is mot 4-oolorable sueh that

R Y i

every sriangulation with fewer vertices is 4-colorablae,

/ Configuration: Graph triangulating a disk (g0 that the boundary of the gisk
‘ - songiazts of edgee and wertisss of ithe graph),y hut not belmg

-

; - g single triangle.
/ Boundary eircuit of a configuradion : Graph consisting of the boundary
- “edges and vertioes of that configuration.
v e propev
/ Couplementary configuration {of & configuration B in a triangulation T
mmebeeccces-t ~ghere 8™ I8 stsub-graph of T}: The configuration differest

from B which is a sub-graph of T and has the same
boundary cirouit as H.

/ Equivalenstof twe 4-golorations Gy, C, on same graph G C, is obtained

from C, by a persutation of eclors (1,2,3,4).
Nots: ¥s do not ccasidar equivalent colorations as "equali”.

'j,!' af-Kempe ohain (in a 4-solored graph G, where a,f are any two differeant
colors 1,2,3,0r 4): & comnested component of the sub-zraph
GaB of G which congists of all those vertices of & which

have color az or ocoler P and of all edges of G whieh join
two such vertices.
Note: A single vertex may bs a Kampe chain.
et of G
Vf Dagree of a vertex in a graph G: pumber eof odgea,\originatin:g at that veriex.

o o D e G

i

Firsts neighborbood of a graph G in a triangelation T (G a subgraph of TY:
e sub-graph N of T whieh eoatains precisely those varilses
of T which belomg t¢ G or are sdge-comnected to vertices

of G, and all edges of T which join iwo vertices of X,
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1°% Xewpe_ohain theoren: Let G de s graph with a 4-colorstion C. Let X of
be a2 ef-Kempe chain in (G,C) (=graph @ 4-cclored by C). Then exehanging
the eolors a and B on K o8 (and jeaving the eolors on all other vertioes

of G fixed) yields a 2iffwrmwkt 4-ocoloration C' % C of G. N
2% Kempe_chain theorem: Let C be a configuration with boundsry eireult B

;;3’;“1: a-z:;;i;;;ti;n C, Let a,b,0,8 be four distinot
vertioes lying in that order on B (see I!‘ig.) and haﬁng
the four differsnt colors a,fy,8. Let K oy be an ay-
Kempe chain mkin (G,C) whioch contains both vertices a
and ¢, Then thew does not exist a Bé-Keupe chain in

(G,C) whieh ocontains both vertices b and &.

Proofs 1“ theorem immediate from defimition of 4-coloration 2nd Kempe chain,
2“ theorem immediately from planarity of G and connectedness of
Kempe ochains, | ‘

Kempe ehain-argument means: deriving new oolorations C,, C,, ... of graph G
from & given coloration C by iterated use of ths above theorems. In
partieular, if G is a oconfiguration with doundary oircuit B, deriving

eolorations whioh induce differamt eclorations 'on B, J

Abbriviated definition of D-redueibility:

A oonfiguration H is csllad D-redueidble if the following holds.

Assmme that H is sudb-graph of & triangulation T and denote by J the
oomplementary oconfiguration of E im T. Purther assume that there exists

& 4-coloration C of J . Then these assumptions allow io conolude by

Kempe ehain-argument applied to eonfiguration J (end by nothing else)

that there exists a 4-coloration C" of J which can be extended to a
4-0o0loration of T. |

For more details ses Hassoh: Untersuchungen sum Vierfarbemproblem, Kapitel I,

- T ey

For a simple example of D-reduction see page | of these notes.

L
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(Hoken on Shimameio’s corstrastiomy Osiober 20, 1971)

f&_}ggg!g.éx 1f th;wzj;:;;rmcij%m*@ iz false then thare axists & eriticsl
triangulation & which sontaing on 85686655-horseshos; by this we mesw s
54begreph which corsists of a verten & of degres 8 and ssven neighbor vertiens
byo,dye; Ly of o (lying ip st order sreund o) whers vertices bfg& E

have dssres 5 and vertices o,d;e,f, 7 have dsgres & (sse HMeg. ). f

3

Theorem Bt The ocnfliguraticr E whick is a first neighborhood of a BEESESES-

horseshoe in a trisngulation (ses Fig.)
is D-redueidla, (The Loundsry cireuit of H has 14 vertices.)

LA L 2 21 %)

Theorem Cs Aoritioszl triangulation esumot sontain s D-reducible
sonfiguration, ' "

Theorems A, B, C imoly that the i-eolor-sonjsoture is true,
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The proof of Theorem C is ar immediste sonswquence of the definitioms:

-ocdyey €I €2 G LD I LB B &

Agsuno D-reducible oonfiguration B lies im eritical triangulation T,

$hen complementary configuration J of H in T contains lews edges than T
and thus (by def. of oritiocality) poessesses s 4-ccloration C. Then (vy
def. of D-reduoidility) T itself possesses a 4-coloration (which extemds
a 4-coloration C* of J that was derived from C hy Kempe chain-argument) .
This is a oontradioction (by def. of oritisslity). Q.E.D,

The proof of Theorem B is given by maehins-eomputaiion. The computation

L2 T 2 Lol d T P@ROTD DD @

was dome on April 24, 91968 at BNL and will be checked by differemt
prograns om different machires,

The proof of Theorem A is given in tkis seminar folliowing Shimamoto's

- e 2-‘-~ - oomemoo o LA A X P 2 T T T T Y

eongirustion: Graph A ig construeted in the following steps.

bl o d e 2oL 2 L1 o

g!ggg A o} If the 4-color-conjesture is faulase ther there exists a eritieal
$riangulation Ao which oontains a vertex of degree 5.
‘horg_l A,s If the 4-cclor-conjesturs is false then there exists a oritical

triangulation 4, (derived from 4 o) vhich eontains a 55-edge 5 &
(i.e., an edge joining two vertices of degree 5). '

Theorem Azx If the 4-color-conjeeture is fulse them there exists a eritisal

- e

trisnguletion 8, (derived from A,) whish eontains a 556mtria.ng1e,5'v5
&
Theorea AE’ If the i-color-conjesturs is falze then ihere eximts a eritisal

G A e o .- o

triangulation by (derived from 4,) whieh ecntains s 5565-diamond, 5%5;
»inally Graph A is derived from 4., b &
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Theorem 13 If the Aooolorwconjwture is falss then we have the following.
(1) There exisis a (planar) graph & which is not 4-colorable.

(11) There exists a (planar) triangulation T which is not 4-colorable.
(411) There exists & minimal triangulationm T i (a8 defined on p.1).
(1v) Thers exists a oritical trisngulation (u defined on p.1). In fact,

overy minimal triangulatioa is aritiocal, dbut not vice versa.

Proofs (1) follows from the faet that every map (in the sense of geography)
has a dual graph G (the vertices of G may de rogarded as the capitals: of
4ho souniries of the maps; the edges may be regarded as direot roads joining
the eapitals of two countries which have & eommon border). A proper 4-
eoloration of a map (es considered in the 4-solor-conjeocture) induses

& 4-soleration of the dual graph G and viee versa,
To becoms a tﬁuﬂgnl,

(41) follows from the fact that mph G of (1) cen be oonpzotod‘/@ adding

p-a-tadanguletionrPes-donanded,] (G is embedded into the 2-gphere,
and 1f any conneoted component »ot z-sphoro minus G ia not a trin.ngh then
1% is triangulated dy additional diagomsal edges.)

(141) follows immediately from the :an that the trisngulation P of (44)
has only finitely many vertioces,

in T, of (111) (with endpoints demoted by a and b) thcp Tin - (@)

is 4-ecloradble. ¥We do this by observimg that T, - {a,d) . G %

is a comfiguration with boundary eirouit B containing 0

four houndary vertices (ses i‘ig.). Ve obtain a triangul- ‘ Tm:,\‘(a,g
ation T, from T, - (a,b) by "ocmtrasting” B (see Fig.) '

%0 a pair of edgas (with common vertex e obtained from 1{

a and b by identification). Now T, has ome vertex less

than !m and thus (by definition of minimality) posesses
a 4-eoloration C, Now reversing the contraetion ("mxtting *‘%’*T

o w0 o -

3, along the pair of edges” and "splitting"vertex o into

vertiees a, b) ve obtain a 4-coloration C' of T, - (a,b) (where a and »

have the same color which vertex o had aseording to C). Q.E.D.
Theorem 21 If T is an arbitrary triangelation (of the 2-sphere) them

L4 4 1 L 1 1 J

(2.1) T does not contain any vertex of degres O or 1.
(2.41) T oontainus at least one vertex of degree <6.
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(Haken on Shimamoto's construstioms Ootober 20, 1971)
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Proof of Theorem 2: (2.i) follows immediately from the definition of

triangulation,
{2.44) is a conseguence of Ealer's formula

v+it-09=22,
where vyt,e are the number of vertiees, triangles, edges in T,
Since caoh edge is bdorder of 2 ¢riangles and each triangle has £ 3
border edges wem have ¢ = -§- e and hence

"3
Let Var Vyo ooy Ty bs ths number of vertioces of degree 2,5,...,m in T

where m is the greatsst degres that actually ocours in T. Then we have
' Ve V2+75¢ cow +"

a =2,

® -?(524- 5v5+ ...+mra) .

Substituting these values for v and e we obtain

v2+75+...¢vm=%(2v2+3v3+...+mv‘) - 2, -y
4vz+3v5¢274+15a17c278«-3v9~...e(nné)v‘ - 12,

Henoe, not all of v,, Vo V4o Vs can be seroc., Q.E,D,

(3.4) A first neighborhood K(2) of a vertex of degree 2

(im a triangulation ).

(3.41) A first neighborhcod H(3) of a vertex of degree 3,

(3.111) A first neighborhood H(4) of a vertex of degree 4. N(3)

Theorem 3t The following configuratioms are D-reducible. @ N (2)

Proof: Assume N(J) lies in a triangulatiom T and its complementary N(Q)

eonfiguration, J, in T possesses a 4-e0loring C. The boundary oireuit 3

of H(3) has j vertices. To prove the theorem we have to derive a coloratiom
C" of J whioh can be extended over N(j). In the case that 3 <4 we simply
take c’- C. This induces a ocoloration on B in which at most 3 colors ocour;
thus we can extend this coloration over N(j) by assigning the M
to the interior vertex of N(j). So we are left with the case j= 4.
Denote the 4 boundary vertioces of N{4) by a,b,c,d
(see Fig.). In the ocase that C induces & eoloration
on B in which only 2 or 3 colors oceur themn we take

eolor
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(Haken on Shiramoto’s sougirustion; October 20, 1971)
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again ¢"= €. In the osse that ¢ induses a coloraticn on B in whioh all

4 oclors pecur Zhmm we use the Xempae ochain-argament as follows,

There i3 a coloration C° of J whioh is equivalent to O and which azoigms
color 1 %0 a, ocolor 2 to b, color 3 to ¢, solor 4 to 4. Now we distinguish
two osses: Came 1: There i3 no 13-Kempe chaln that contains both variliss:
aand o in (J,0°), in this case we obtaiz C* from C' by exchanging the
eolors 1,3 in the 13-Kempe cheim (im (J,C')) which contains vertez a,
Cese 23 There is & 13-Kempe chain in (J,C') that oonteins both vertices
a end ¢, In this cass we use the de Kempe chain theorem for coneluding
that there im no 24-Kempe chsin that contains both vertices b and 4,
Then we derive O  from C' by exchanging the colors 2,4 in tbs 24-Kempe
shain that contains vertex b, In each of the two cases G indwoes on B

a soloration which uses cnly % eolors, Thus ¢* 1s extendable over N(4).
This finishes the proof of Theorem 3,

Proof of Theorem A : We ciaim that the eorlitisal triangulation of Theoram
1.{(iv) oontains a vartex of degree 5 and thus can be taken for A .

By Theorem 2.(i), (ii) the trisngulation eontains at least one vertex of
degree 2,3,4, or 5. By Theores 3 and Theorem C the oritical triangulation

sannot contein any vertex of degree 2,3, or 4, This proves Theorem Ao.
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(Haken on Shimamotc's construction; October 21, 1971)
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An S-graph is a gonfiguration $ which is obisined
from a oritical itrizngulation T by deleting oze
edge, say (a,c). The vartices a and ¢ on the bound-

LT M R

An 8,-graph is 2 configuraiion 5, vhich is oblelaed % b al® 5 i

from & oritical ¢rianzulation T by daleting 4w
edges bordering to ors triamgle. Vo depric the yﬂ_________?% S
vertices so that the deleted edges are (s,e) i2d

(a,%) (see Fig,). Then vertex = is called the top

vertex of 52, and veriices o sad ¥ are called the bottom vertices of S

L L X L 1 - - > S . 2

% Tyxk

o~
L4

A D-graph is a configuratica D which is obteined b=
from a oritical triangulation T by "outting along
two conseoutive edges”, say (b,) snd {»,¥), and
thus "splitting the wertex " into twe verdices
& and o in such a way that vertex s iz eithsar
of degree 3 or of degree 4 in D {see Mg.).

(In ail applications we shall depiet a D-
graph as in the lower part of the Fig,

whioch is obtained from ths upper pari by

an involuticn about ths boundary sircuit of I.)
Vertex a is called the top veriex of D, amd
vertex ¢ is called the bottom vertex of D.
An E-graph is a configuration which is
obtained frox a D-graph D by deleting

one edge, say (¢,B) from the boundary
oirouit of 8 which originctes from the
bottor vertsx, o, of D. (Ses Fig.; for
practical purposes we have renamed vertex
¥ into & where it ocours in the E-graph
E;) Again, we call vertices a and ¢

P H LY T D S oD ue s e we W
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(Haken on Shimamoto’s sonstruotion; OoBokar 21, 1971)
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Oolomtioa thsoren for wgrs@nsz L&t 8 bs an S-graph with speocial vertices

LA g 2 1 12 7 7" 1"3 Tued > ETE s

a
a and o, Denoie the vsrtmaa in the boundary cirouit of 8 by b ¥ (Mg.p.7).
Then we have the following: e

(38.1) 8 is 4-colorabla.

(3.2) I£ C is a 4-0clorestiion of § than the speocial vertioes a and o have
the same eolor.

(3.3) 1£ C 45 a 4-coloration of § sush that & end ¢ are oolorvsd 1, then
in (3,C) there are a 12-Kempe chain, a 13-Kempe chain, and s 14 Kempe
chain ecach of whioh ocontains both vertices x and o,

1
(S.4) S admits a coloration imdveing 2 2(93; the boundary oircuit of S},
AN

1
4
(S.5) S admits a coloration inducing 2 3.
(Casel) i 4 (Case 2D 1

(3.6) 3= (interior edge). sdmitene eclor, ind, 3 3 or,a eolor, imd. 3 4 ,
¢ 2

=% D

(3.7) 8- (a,b) 2duits a ooloraticn indueing 1 3 .

ANV

(S.8) 8- (b,3) admite a coloration induoing 1 3 ,

ud

Coloration theorem for D-gr aphst

DPGRBOBBED OO DN WS wr e a

Let D be a D-graph with boundary sirewit b ‘F {(Fig.p.Ty a= top vertex),

Then we have the Following: b

(D.1) D is 4-colorabie.

(D,2) If C is & 4-coicration of D them veriices a and ¢ have different eclors,
(D,3) If C i a 4-coloration of D gush that 3,6 are colored 1,2 them in

(DyC) there is & 12-Kempe eheim which conisips both vertices a and e.
1
(D.4) D admits a coloration indueing 3 3 ,
2
1
(D.5) D admits a coloration indueing 3 4 .
(ca$£ 1) 2 1 (CQS%Q() 1

(D.G) D- (interior edge) admits.a eolor, imd, 2 2 or,a color, ind, 2 3 ,
4 b )
4
(D.7) D- (a,b) admits a coloratiom imd., 1 3 ,
2

1
(D.8) D= (v,0) admits a coloratiom indueing 2 3 .
2
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(Haken on Shimamoto's comstructiony October 21, 1971)

Coloration theorem for S,-4raphas v e %

Let S, bo an £, c & (¥ig.p.T: a= top).

Then we have the followiag:

(32.1) 8, is 4-00loredlz.

(S,.2) If C 48 & 4-coloration of S, ther une of the Lotiom vertices o, ¥
hag the same cclor as the top veriex 2.

(32.3) if C 8 a 4-colorstion of S, such that a and o are colored 4,and
¥ is oolored 2 than in {3290} thers are o 13-Kemps shain and 2 14-
Kempe chain ecach of which oontalrs both vertices a anl .

213

1 2

~greph with boundary eironid

(32‘,4) S, adnits a coloration indusing

(35.5) 3, adnits a colorat. ind, 313,

1 2
(8,.6) S, adnita a coloration indueing * 13,
1 2
{Cassd) ia14 (Tas:l)
(82.7) 8,- (interior edge) admite!\&. coloration inducing 5 OF8
§ &54‘3‘) (:!’«ﬁ;-@.’{&')
eolor, ind, 312 grﬂa ol, ind, > 1 & pwg,\a. ool, ina, 412
A 3 2 3 2 3
(Cm,g,a £3 ((au.z}
(82.8) Sza {agd) admits 2 ool. ind. 112 or 8 col. ind, 114 o
' g2 3 7 2 3
{(Case 4} (Cased)
(S,09) 3, (b,0) admiis a col. tmd. 212 orpacol, tna, 2 14
2 3 ' 2 3
{Cased Co\u,l)
(32.10) 8,- (c,%®) admite,a sol, imd. 31 3 g(gha col, ind. 31 4 .

2 i 2 2
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(Hakon or Shimamoto's comstruction; Ostoder 21, 1971)
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Coloration $heorem fo- E-grapha: b
Let B be an f-graph with dboundary civeuit
Then we have the toilowing:

(B.1) E is 4-colorable.

(B.2) If C 48 2 4-coloration of E then a ard o have differsnt ocolors.
(BE,%) I# C 43 & 4-coloration of E guch that &,¢ are ocolored 1,2 then in

(B,C) there is a 12-Kempe shain whieh osntainmes both a sund o,

LT )

(Fig.v.73 a= top vertsx ).

c o= botton veartex

(B.4) E adnits a ccloretion indweing 31

(E.5) E admita o col, ind. 7 .
Fs 5 9
(E.6) & aduits = coloratiorn induoing g o
31 ¢
(E.7) E admits & ool. ind, g .
2 4
{Casel)
£B.8) E- (intericr edge) =dmitspa
21 (Ca322) 21 (Cass3) 41
ool, iad, 2 or,s eol, ind. 2 orpe col. ind. 2.
3 - I 3
1 1 . 1
, {Cass1) A 20 (Cased) 2
(B.9) E« (bso) admits,a col. ind, 2 or,s ool, imd.
4
2 2
(tased)
(E.10) E- (a,b) admitaja
11 (Cossd) 11
col. 4imd, 2 or = col, ind, 3 .
4 1 ]
\ 2 1 2 1
(Casedl 2 2 {(Case) ’ 2
(E.11) E- (0,4} admits;a eol. imd. ... - - - - [ orsa col, ind. P
2 1 1 o 31 1
. . (Case 2 Casal) 2
(B.12) E- (d,0) sdmitspa col. ind, 5 0r,8s col. ind, 2 °
) 1
. (6%3’-'!1} 1 3' 1 (fﬂ&q,z) 4 1
(E.13) E- (8,0) admits,a coloration imd, 3 or,a col, ind. 5.
3 3
2 2
Cass ) 21 rased) 31
(E.14) %- (e,a) a.dmit{s,\a aol, imd., 1 gwé",ja&%m ind. 1.
2 . 2
(Cage 1) ! 31 (Cassd) | 41
{(BE.15) E- (o,a} admits s coloration ind, i or,a col, imd. 1
3 3
2 2

wb AN -
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1): Since 3 = oritical graph mimus edge it is 4-colorable.

S.2): Assuming the contrary,Ts &+ (a,c) would be 4- oolora.ble,

MDBDB @ .‘aa-

a.nd thus not critioal. Contradiotion,

Proof of (9.3): Assuming the oontrary,for at lesst one value of a=2,3,4
the 1a-Kempe chain in (S5,0) whioh contains vertex c¢ would not contain
vertex a. Then swchanging colorz T,z in that chain would yisld & 4<

ooloratica contradicting (5.2),

Proof of (S.4): By (8.1) and (3.2) there is a 4-coleration of S whieh

colors a and o the samae. Thus there is an aquivalant 4-coloration C of 3
1 1

which induces either 2 2 or 2 3 ., In the first oase (3.4) is satisfied;
1 1

in the seecnd case, by (3.3) there is 2 14-chain from & to o, and thus
(By the 2% Kempe chain theorem) 4ha 23-chain dn (3,C)) whioh contains ¥
does not eontain b; then exchanging eolors 2.3 in that 23chain yields a

eoloration of S as demanded in {3.4). This proves (S.4}.
1
Proof of (3.5): By (3.4} there is a ooieraticn G of 5 indueing 2 2,

AT SR Ay A 1

Because of (S.3) the 2%-chain containing ¥ does not contain b; thus
exehanging 2 and 3 in that chain yislds ths demanded voloration.

Proof of (S.6): Let (x,y) be an arbitrary interior edgs of S o(i.0., an edge
of 3 that does not belong te the boundary eirecuili of 3, but may have an
end point on that boundery circuit), Reeall that S+ (s,0) is a critiecal
triangulation T. Thus 1- (x,y) admits a 4-coloration, zay U. This indueces
s soloration, for simplicity also calledé T, on T- (x,y) - (a,0) = 8- (x,y)
whieh gives different colors to a and e, Then C is eguivalent to a color-

1 1
ation of 5- (x,y) whioh induces one of the colorations 3 3, 3 4. Q.E. D,
2 2

Proof of (S, 7)‘ P«8S+ (a,¢) is oritical, Thus T- (2,b) admits a 4-coloration
C; then C colors & and v with the same sclor {(since otherwise T iteelf
were 4-colorable). We regard C algo as a ooloration of S~ (a,b) =T~ (a,b)-{a,c

Now C is equivalent to a coloratiom of S - (2,b) as demandad,
Proof of §.8): Same az proof of (3.7) with roles of a and ¢ exchanged.

e >ew apc>we
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Proof of {D.1): Uzez3l that I is obiaimed from a oritical triasngulation

MDD W PO T

T by upntting & vartsx v of T into two vertices s and ¢ (sece Fig. below),
' , a (du; 4)
¢\\

P

Cape_ 3% a is of degres 3 in D, Denote the interior vertax of D wsuieh
neighbors a by d: (same nctation in T), By delsting vertex & (and the 3

edges originating from it) from D yields & graph D- a which is "same"

as T- (v,d) {i.e., ths vertices and edges of D-a are in 1-1 correspond-
ence with the vertices and edgas of T- (v,4), ¢ sorrezponding toc v).

Sines T is oritical T- {v,d) admits s eolorstion; demote the corresponding
coloration of - a by C., Now C oan bo extended to = coloration C' of D

(sinoe vertex a can be glven a oolor diffaoremt from the solors of b,d,%¥) QE.D.

Caso.2t a is of degre? 4 in 1. Denote the interior vertices of D whioch
neighbor a by 4 and & (neighboring b ard ¥, respectively). Now graph D-a

ig game as T - (v,d) - {v.%). Thus D~ & adpite a 4-coloration, say C. 1f

only 2 or 3 colors are used for the vertises b,4,4,5 then C extends to &
4-goloring of D as demanded. if all 4 eolors are used for b,d4,4,%, say

€B,7, 8 then either ithe oy- ohain&ua%aining ¥ doss not oontain b or the
ﬁ&-ohainAcon%aining ? dces not conmtain 4 {or both); thus we can ohange C

into a 4-e0lcration o of D-a by either exchanging «,y in K or exchanging
B,& in K'; then G~ uses only 3 cclors on b,4,d,5 and thus can be extended

%o a 4-soloration of D as demanded. This takes care of Case 2 and proves (B.1).

Proof of ‘(.Q;g): Aasumi.ng the conirary, C would yisld a 4-coloration on
the triangulation T obtained from D by identifying vertices a and ¢ to
vertex v. This would contradict ths eriticality of T. Q.E.D,

Proof of (D.3): Assuming the conirary, the 12-ohzin in (D,C) whieh ocntains

DB WE B WSS

¢ would not ocontain a. Then exohanging oolors 1,2 in that chain weuld
yield a eoloration of D contrzdicting (D.2). Q.E.D.
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Proof of (D 4) and (D.5): Because of (D.1) =ud {D.2) Threra is a coloration

MBS B &

C of D which colors vertices a,e,b 1,2,3 and by {9,:) provides for a 12-
chain from a to ¢, Thus the 3d-chain iz (D,C) which ocoutalss b doss not
contain b. Exchanging colore 7,4 in that chain yields a ooloration C*.

Now either C 1z 28 demanded im {D.4) mad C' ez in (I 5),or the other way.

Proof of (D.6): Let (x,7) be an interior edge im D aru demcte the corresp-

onding edge in T also »y (x,y) (whers T is obteined ficm D by idemtifying
a and o). Then T- (x,y) zdmits a 4-occioration, say C. The corresponding

4-ooloration of D- (x,y) has then same colcr at a and &, and henoe is

t i 1
squivalent to a coloration, say C " which imduces ome of 22, 23 . Q.ED

1

Proof of (D,7). Case 1: a is of degree 3 iz D (left of 1g., on p.12).
’ 1
By (D,5) there ia a coloration € of D indueinmg 3 4 on b % . Them, by (D.3),
2 G

d has solor 2. We regerd C also es & eoloration of D (a,»). How in
(D~ (a,b),C) the 13-chainjcontaining b does mot contain a {zince a does

not have any neighbor vartex of oolor 3 in D- {a,b)). Thur exchaunging
1
14 - and thus
being equivalent to the demanded qolora’tion, Q.BE.n, ¢

the solors 1,3 in K ylelds & ooloration {sducing

Case 2: & is of degree 4 in D (right of Fig. on p. 12 nota‘ion as there).
1

Ag in Case 1 there is a coloration C of D inducing 3 4. Ther by (D,3)
2 .

we have either
Case 2.1: d has color 2, and 4 bas color 4, or

Case 2,2t d has color 2, and { has color 3.
In Case 2.1 we proceel as in Case 1 (i.e., we exchange 1,3 in the 1..chadn
K in (D- {a,b),C) whish contains b).

In Case 2.2 we have tne coloration 52 4 on ‘bd‘K‘B
[ o

THew wé ixahango 'khe solors 3,4 in the 34-cha.in whioh oontains S (a.ud

whioh vy (D. 5) does not contain b). This yields a coloration C' of D
induoing 42 34 . Now we consider the 25«=¢ha.in,‘in (2CY" whien
2

contains d and d. Then we have either
Case 2,2.13 K' does not contain e, or Case 2.2,2: K' contains o.

—---‘.‘ ‘-‘-»—am‘ﬂ'
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In Cage 2.2.1 we exchange solcrs 2,3 im K' whioh yields a coloration C"

5
of D inducing 4324 . Then we exchange 3,4 in the 34-chain in (D,C")
2
whioh somtains b aand & (and by (D.3) not D). This yields a coloratiom C*

y!
of D whioh induces 34 24 . But thor we ars in the aituation of Czse 2.1
2
(with C" in place of C) and we prodeed as there (exchauging 1,3 inm the
13-0hain eontaining b in (D- (a,b),C":).

sey
In Case 2.2.2 decause of 23-chaim K' jolaing d ané o, the 14- ohainl\xi}

in (D~ (a,%),{"} whioh containe % does not ooantain a. Now we exchange
1,4 in X which yields a coloration equivalesnt to the demanded one.
This finishas the proof of {D.T}.

Proof of (D.8): Cess_1: a is of degree 3 in D {Mgs. pp. 12 and 15).
Tw (v,b) admits a colorstion, say G, whieh eolors boih v and b the same
(sinde otherwise T would bas not eritical). We regard C also as a eolor-
ation of T- (v,b) - (v,d) which ig "same" as D- (b,0) - a. We regard C
also as a oolorsiion of D- (b,e} = a (0 corresponding to v)., Then C
extends to a coloration C' of D (b,e) (whiok assigns %o a the color
different from the colors of b,d,b). Now C' (coloring b and o the sane)

is equivalent to the colovation demanded. Q.E.D.

Case 2: a is of degrse 4 in D {(Fign. p. 12 right and p.15).

Again T- (v,b) admits a coloring C which colors v and b the same, This
serves also as s coloring of T- (v,b)- {v,d) - (v,q) which is "same” as
D- (b,0) - 8. Now either Case 2.1: C assigns only 2 or 3 colors to b,d,d,%,

R PRy )

or Case 2.2: C asasdgns all 4 cclors %o b,d,d,5, say «,B,Y, 5.

In Case 2.1, C extends to a soloratiom of D- (b,0) (as in Case 1) whieh

is equivaleant to the demandied soleration,

In Case 2.2 we identify the veriiees v and b of T- (v,b) - (v,d) - (v,z)

0 a vertex, say b'{see Fig.p.15). This yields a graph F which is also
eolored by C (since both v and b are solored o). Now either the qochd.n K
in (7,C) which contains d does not comtaim D' or the B&»ohain,p‘hioh
sontains D does not contain d (or both). Then we esither exchange a,y im K
or B,8 in K' in order to obtain a eoloration C' of F in which only 3
solors are used for b',d,d ,b. The eorrespending coloration of D- (b,0)- &

extends then to a coloration of D (b,6) equivalent tc the demanded cne.
Q.E.D,
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Proof of (S,.1): Since 5,- oritical graph minus edges it is 4-colorable.

WMBEE BE oo 0 MZ

Proof of ( (3,.2): Otherwise T = S,+ (a,0) + {2,8) would be 4-coloradle.
tha
Proof of (8,,3): Otherwise at least one ofple-cheins (a=3,4) in (8,,0)

Samaes @

whieh containxz vertex a would not osontain o, Then exchanging 1,a 1:1 that
ohain would yield & coloration of 8, vontradicting (32,2).

Proor of (32.4): By (8,.1) end (3,.2) 8, admits a coloration, say C,

whioh indmocs P13 (taken from a coloration of S-graph T- (a,e)).
b 2 From « To ¢

By (32.3) there ia a 13-chain K end a 14-chsin X' in (S,,0)f If pm=2

then C is as demanded. If B- 3 them we exohange oolors 2,3 in the 23-

ehain whieh contains b (and becense of X' does not contain G). If B= 4
then we exchange 2,4 in the 24-chain that ocontaias b (and because of K
does mot oontein ©). In esch case we obtain a coloration as demanded.

Proof of (8,.3) and 8,.6): Let C e & coloration of S, as in (8,.4)

inaueing 2 ' 3 and by (5,.3) providing 13- and 14-chains from & to o.
1 2

Then exchanging 2,3 in the 23-chain containing b gives a ocoloration as

- demanded for (32.5), and axchanging 2,4 in the 24-chain containing b

yields a eoloration as demanded for (32.6). Q.8.D,
Proof of (82.7)t Let (x,y) be an arbditrary interior edge in S, (and

denote the corresponding edge in T also by {(x,7)). Then T- (x,:,v) adnits
s ooloration, say C,(which colorsds a,c,% with 3 different colors). The

eorresponding coloration of S, - (x,y) is then ejuivalent to the one needed,
Proof of (3,.8): T- (a,b) admits = eclorasion C which colors both a and b

the same (since T iz oritical). Them the sorresponding coloratiom of
8,- {a,d) 18 equivalent to the demanded ocloration, (since C assigns
three different colors to a,s,%j.

Preof of (32.9)z ?- (b,0) admite & soloratior C. Then the ,corresponding

ooleration on S,- (b,0) 1s equivaiont to the demanded one.
Proof of (3,.10): ®- (c,¥) adnits & eoloration, say C. Then the eorrespond-

----- - - - o ey T

ing eoloration of 8,- (0,9) is oquivalent to the demanded coloratien,
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{(Hakan on Shimamoto's constructicmy COctober 23, 1971)

Proof of (E.1)s Sines E~D- {(B,¢) this follows from (D.1), (see Fig.).

Proof of {E.2): Assuming the contrary, C would yield & sorresponding

4-00loration of T (since T ozn bde oblained frox E by identifying a and o
and the edges (b,a) and (b,0)).

Prggg of (E.3): Assuming the ocontrary, exchanging 1,2 in the 12-chain

in (E,C) whioh contains o would yield a coloration of E contradieting (E.2),

¢ 1
¢¢¢¢¢¢ 3

where a is either 1 or 4. By (E,3) the only interior
vertex, say £, of E whioch neighbors a (sea Fig.) is
colored 2, Thus the 14-chain in (B,C) sontaiuing d
does not eontain a, and exchanging 1,4 in 4het chain
yields a coloration, say C} of E whieh induces 3 1%

B (B=1or 3). Then © and C' are the o B
eolorations as domanded, ( =, 5.) ,

Proof of (E.6) and (E.7): By (&= u) E admits a coloration C inducing

WE@EmE; S  apocn

( md«aaj3 1 \ Ki 2
Ezchanging Ly3 i the {3-ochaingin (E,C) whiah

L
contains o yi'l&' & soloration C' of E induoing 31 3 1

A\ Y

4.5 demanded _ (5a.‘«m (E.3) K &es % h).
Proof of (E.8): By (D.€) E- (interior edge) admits a coloration C
21 21
induoing 2 {a=3or 4) ora eolontion C* indwoing 3 (B=2 or 4).
@ : , p
1 29 1
Now C is aquiva.lont to a coloration indueing 2 3 4f B= 2 then C' is
X
31 1°
equivalent to a coloration induding 2, and if B« 4 then C' is squiv-
3
4 1 1

alent to a coloration ind. § * In every case E- (interior edge)
1
admits a coloration as demanded.
2

1
Proof of (E,9): By (D.8) E- (b,0) admits a coloration ¢ inducing 5

where either Cass 1: =~ 1 or Cese 2¢: e~ 4. In Case 1, C is as demanded,

o D AD v W
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(Haken on Shimamoto's construction; October 23, 1971)
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K
In Cagse 2 we consider the 23-chain,im (E- (by0),C) which contains e, and
w6 have elther Cese 2.1: K contains neither & nor s, or Case 2.23 K

€D TR O oF oD > £33 0w 3 > W

oontains at least one of a,c, 21

In Gage 2.1 we exchange 2,3 in K and obtain a cocloration inducing ﬁ o
2

In Case 2.2 we exobange 1,4 in the 14-chain containing d (which because
of K does noct contain a) 21
and obtain a coloration inducing z o This takes care of all ocas¢s.
2
11

Proof of (E.10): By (D.7) E- (a,b) admits a eoloration C inducing 3

. . , 0
where elther Case 1: a=1 or Case 2: gm 4, In Case 1, C is as demanded.

= o . D mwe

In Case 2, let K be %the 23-chain in (E- (a,b),C) which contains e, and
we have either Case 2.1: K does not ocontain ¢, or Case 2.2: K ocontains e.

e e LR e O GT T en G D D

In Case 2.1, exchanging 2,3 in K yields a ooloration as demanded.
In Case 2.2, exchanging 1,4 in the 14-chain containing d (which because
of K aontains neither a nor b) yields a eoloration as demanded. Q,E,D.

Proof of (E,11): Since (c,d) is an interior edge of D= E+ (o,e), by (D.,6)

coeem S0 =

E- (0,d) aduits a ooloration induoing 2 ; or a col, ind, 2 ; - Moreover,
1 ¢ 1 P

we must have (in the first case) a=1 and (irn the second case B= 1 gince
otherwise we would have a coloration of D eoloring a and o the same, in
oontradiotion to (D.2). Thus in every oase we have a coloration equivalent
to the demanded.

Proof of (E.12): Since (d,e) is an interior odge‘af D=E+ (c,0), by (D.6)

BB oo ©

2
1 @ 1 B
in the first case we have a= 2, and in the second case B~ 3 (since other-
wise we would have a coloration of D contradicting (D.2)). Thus in every
case we have a coloration eéuivalent to0 ths demanded.

E- (d,e) adsits a coloration C indueing 21 or a col, ind. 2 ;. Moreover,

Proof of (E.13): By (E.12) E- (d,e) admits either (Case 1) a coloration C

L L X L L 2 1 T 2 2 22 P9 L ]

21. 31
induoing 2 or (Case 2) a coloration C' inducing 2.,
2 et 2
1 1

In Case 1, let a be the color of vertex £ (Fig.p.17) (a= 3 or 4)§ let 8
be 3 or 4 but ¥ a . Exchanging 1,p in the 1B-chain in (E- (d,e),C)
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whioh contains ¢ (but does not eontain a)ycoloration equivalent to one

1
induoing 3 as demanded.
3

2
In Case 2 let K be the 14-chein in (E- (d,9),C') which contains o, Then
either Case 2.1: K contains a, or Cagg_g-g. K doss not ocontain a,
In Case 2.1 we exchange 2,3 in the 23-chain in (E- (d,e),C') that contains
d (and besause of X neither contains d nmor e) and obtain a colorationm c*

‘ 21
indueing 2 ., Then we apply the procedure described in Case 1 with c*

1 2 instead of C, which takses care of Case 2.1,
In Case 2,2 we exchange 1,4 in K and obtain a ocoleration equivalent to
one as demanded. This proves (E.13).

Proof of (E.14): T- (v, ) (see Fig, on p.7) admits a 4-coloration im which
(since T is oritical) v and b are oolored the same; an equivalent eolorat-
ion, say C;, of T- (v,b) colors v and ¥ both 1. This ylelds a coloratiom,
also oalled C, of the graph D- (2,5) - (0,5) (as obtained from T- (v,%)

by splitting vertex v into a and e} which azsigns color 1 to a,b, and e,
Bat D- (a,B) - (0,5) 13 same as E- (a,0) (where b is renamed "e"), Thus

C 48 equivalent to a coloration C' of E- (e,a) induoing 2 : :
2 9

| 1 @ _
where a is either 2 or 3. In each ocase C' is equivalent to a coloration
as demanded. '

Proof of (E.15): Exohanging the roles of b and ? in the proof of (D,7)

we conoclude that D- (aﬁi) admits 2 eoloration C inducing 311 . Since

E- (e,8) = D- (a,d) - (b,0) (‘6 being named "e" in E) 2

this is also a ooloration of E- (e,a) indweing - f; whers a is either

3 or 4. 2 ¢

In each sase C is equivalent to & coloration as demanded.
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o,
92923522’3“&3‘39252233 Lat 5 be an S-graph )ﬁ’ RN i
with boundary oircuit b' ¢ (special vertices \} b
a' and o'). cf N,
Let D be a D-graph with boundary oironit b" %’“ \ p/ cll

(top vertex a", bottom vertex «"),

Le% graph P be obtained from S amd D by 1&mtia
fying their boundary oircuits so that ale" are
identified to a, bID™ %o b, eis. (see Fig.).

v

Then P is a eritical “riangulation,

b' a'®*
Construociion Theorem I3 Let S be an SQ«graph with boundary aircnit

O D B DR T DD WD WD DD D z‘
(top vertsx &', botton vortices o' and . e v
Let E be an E-graph with boundary eirouit e: (top vertex a", bottom a"),

d o
c" a‘n 9 b"v

Let ¥ ve another E-graph with boundary oircuit e
d 312
(top vertex a™', bottom vertex ¥I"'). ¥

Let graph Q be obtained from 5,, E, and % by (partially) identifying
their boundary circuits so that a’,a"™, gnd &' are idemtified to s,
and b’ ,b" are identified to b, and B, B"' are identified to B, eto.
(see Fig., delow).

Then Q is a oritical triangulation.
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Proof of Conmstruction Theorem I3 P is a triangulation dy comsiruoction.

P i3 not 4-coloradble since a 4-coloration C of P would either contradiot
(S.2) or eontradist {1.2),

1t remains to be proved that P - (arbitrary edge) is 4-ocolorable,
We prove this by B22m8 of the coloration theorems S and D (p.8).

{(x.1) Po (interior edge of S) admits & 4-soloration which induces on b "5

T 1 ¢
either 323 by g:iggcase 1 or 34 by %(SOG),Case 2

2 (D.5)
(1.2) P~ (interior edge of D) admits a 4-coloration which induces

' B ,
either 2 2 by% gg:g%’case 1 . or 223 b, ggsnzggpcasC 2 N

1
1 .
| ng_)' Pe (a,b) admits a 4-coloration which induces 1 5 by{é%;g .

(1Y) P-(a,b) admite a 4-coloration. A proof of this is obtained by
exohanging the roles of b and b im (I.3) (and in the proofs of (S.7)
and (D.7) which are used for proving (I.3)},

4
{I.4) Po (b,c) admits a 4-coloration which induces 2 3 by {%%“gg (1"2)
2

S!:Z.). P- (b,0) admits a 4-coloration. A proof of thiz is obtained by
exchanging the roles of b and T im (I.4).

(I.1) o o . (I.4) imply that P - (arbitrary edge) is 4-colorable, Q.E.D,

Proof of Conatruction Theorem II 3 Q is a triangulation by conastruetion.

D A DI A WD Ay AP D CD I D ED LD D TR D AL D DO E CD .-

Q is not 4-00loradble sinoce a 4-eoloration C of Q would either contradiet
(82.2) or ocontradioct (E,2).

It remains to be proved that Q- (arbitrary edge) is 4-colorable.
¥Weo prove this by means of the coloration theorems S, (p.9) and E (p.10),

vabd
®

414 (8,.7),Case 1 312 (S,.7),Case 2 ol

either 4 vy 2E.4)§3“’4) yor 1 uy (EG) (on E)
2 3 E.4}(2= 3~ 4) 2" 3 (EG)(Z@*B)(ME)

{II.1) Q- (interior edge of S,) admits a 4-coloration inducing om

or (cont. next p.) (indicating the permutation of colors in (E.4))
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314 (8,07),Case 3 412  ((8,.7),Case 4
or 1 vyi(se) voor 1 by d(E4)(3ea) .
23 (E.4) (23~ 4) 2'3 (E.6) (2% 3)
(11,2) Q- (interior edge of E) admits a d-ooloration which induces
212 ((5,.5)(32224) 313 (6p5)(2e4)
either 3 by 4(E.8),Case 1 , or 3 by '(E.e),Ca,se 2.,
174 (Eé)“;:ﬁ/d) 174 (B.7)(2¢ 4)
413 (8,.4) (2% 4)
or § by <(E.8),Case 3 .
1 4 (E.7) (2% 4)

.(.H:?.l Q- (interior edge of E) admits a 4-ooloration, A proof of this.
is obtained by exchanging the roles of E and %, of b and P, and of o
and ¥ 4n (I1.3) (and in ths® - ' proofs of the coloration theorems
needed there).

(11,3) Q- (0,4) admits a 4-coloration which inducss

T 212 (62w 312 (8,04) (2 3)
either f by <(E.11),Case 1 , or f by $(E.11),Case 2 ,
‘ 13 (E.4) (2% 3) 13 (B.4) (2« 3)

(11.3) Q- (%,d) adnits a 4-coloration, A pwoof of this is obtained by

exchanging the roles of E and E, of b and ¥, and of ¢ and ¥ in (II,3)
(and in the proofs of the coloration theorsms neesded therse).

(II.Q Q- (0,%) admits a 4-coloration whiech induces

31 3 (3,.1P),Case 1 314 (3,.10),Case 2
either f: by 9(E.6) s OF g by 9(B.6)
2" 2 (E.6) 2 ' 2 (E.4) (3% 4)
.‘.E:él Q- (b,0) admits a 4-coloration whioh induces
. 212 (82,9)9(3&80 1 212 (32.9),,Case 1,(560.4)
either i by 9(E.9),Case 1 , or 2 by {(E.9),Case 2
273 (B.5) (2% 3} 2" 4 (E.6) (272 4= 3)
214 (S,.9),Case 2 21 3 $(32.9),Ca.se 2, (3« 4)
or i by { (E.9),Case 1 , or ? by <(E,9),Case 2 o
243 (E.7)(2 3 4) 2" 4 ((5.4)(2%4)

S.I_hg_)_ Q- (5,3) admits a 4-colorstion. 4 proof of this is obtained by
exchanging the roles of E and B, of b and P, and of o and ¥ in (11.5),
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(11,6) Q- (a,d) admits a 4-coloration which induces
1

12 (s,.8),Case 1 11:2 (s,.8),Case 1, (3% 4)
either 4(E.10),Cas8 1, or 3 %(E 10),Case 2
2%3 (E. 5)<2* 3) 2 4 (E 6)(5'"’ 2- 4)
114 (32,8)903.5@ 2 1153 (3208)908.33 2, (3% 4)
Ty MUEREL T et TGN
o - [ s

g;;g}_ Q- (a,b) admitz o 4-coloratsom. A proof of this is obiained by
exchanging the roles of E and B, of b and B, and of ¢ and ¥ in (1I.6).

{11.7) Q- (a,e) admits a 4-coloration whieh induces

212 ((8,.5)(2%3) 214 ((sz.s)ﬁz-vs-a)
either ) by J(B.14),Cese 1 or 3 (E.44),Case 1
123" )(E.15),Case 1, (23) ' 1°3 ((E 15),Case 2, (2%3)
312 (5,.4) (2 3) 214 (5,.4) (22 34)
or 1 wyl(E.14),Case 2 or 3 by<{(E.14),Case 2
1“3 (E. 15),,0&30 1, (2% 3) 1“3 (E.15),Case 2,(24’3)
{11.8) Q- (4,e) admits a 4-coloration whish induces
212 (8,.5)(2%3) 214 (,.6)(223=4)
either 3 (5 12),Case 1 or 2 vy<(E.12),Case 1
1°3 (E.13),Case 1, (2«3) 1“3 (E.13),Cage 2, (2»3)
312 (5,.4) (2¢ 3) 394 (’(s .4)(2@3-'4)
or 2 y<(8.12),Case 2 or 2 (E:12),Cane 2
1°3 (B.13) ,Cage 1, (2% 5) 1°3 (E.13),Case 2, (2w3)

(1X1.1) « . . (1I.8) imply that Q- (arbitrary edge) iz 4-colorcble., Q.E,D.

7
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Proof of Thecrez A, : The oritical “triangulation 4, (as required for e
proof of Theorem A,; see . %) is derived from the critlcal triangulation

Ao using Construction Theorem I (ses $.20) as follows, (See Fig. below,)

Let a' be a vertex of dagree 5 imn A of and et o' be a vertex of A neigh-
boring a'. Then let graph S be equal to A - (&’ s¢') and denote tho two
other vertices on the houndary oirouid of 3 by b and ', Now S is an
Segraph by def. (see p.7).

Let d be a vertex cf degres 5 in another weopy, =ay Ag, of A , and let
b",v", 5" be three neighloring vartiess of 4 im A7 iying around d in that
order, Then let D be the graph obtaimed frem A by spiitting vertex ¥"
into vertiees a” and o" where the cut is dore along the edges (b",v")
and (v" b') so that a" is meighboring & iu D. Now D is a D-graph by def,
(see p.7) (ard a” is of degree 5 in D having neighbor vertices b”,dfﬁ“).

Finally A1 is cbitained from S and D by idemtifying their boundary eireulis
in sueh s way that a' ané 2" are identified %o a vertex a, and that b',b"

are ldentified %o b, etc. Now A1 ig a eritieal triangklation by Construoct-

ion Theorem 1. MNoreover, A, contains the 55-edge (a,d). Thus 4, has all
the required properties snd Theorem k1 is proved.
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Proof of Theorem A_,: Let S-graph 8 be as in the proof of Theorsm A1.

DO AP D OB NP WY S AD B WP D P e A

Lot (4,%) be = 55-edgs in the oriticel itriamgulation A, and let v® be 2
vertex of A, neighboring both 4 and d. (See Pig. belgw.) Denote by b"(by .}
the vertex of A, which neighbors both v" and d (and d) but is different
fron E{, (from ). Then let D e the graph obtained from A, by splitting
vortex v" into two vertices 2" and ¢” where the cut is dons along the
edges (d%,v") and (v",5")so thst a® 48 neighboring ¢ and § in D, Now

D is a D-graph by def. (and a" iz of degres 4 in D),

Then Az is obtained from S aud R by identifying their boundary oircuits

as deseribed in the hypothesis of Construotion Thsorem I. By that Az is
a oritical triangulation and, morecver, contalns the 556-triangle dda. Q.E.D.

ggggg_gf_gggggggag5 t Let S-graph S de as in the proof of Thecram A

1°
Let ded be a 556-triangle in the oritfocal triangulation 4, and let v" be
the vertex of A, which neighbor§ both d and d but is different from e.
(See Fig. bdelow,) Then let D ba %ths graph obiained from A, by splitting
v" into a" and o'’ precisely as deseribed in the proof of Theorem A,.

Then AB is obtained from S and D by identifying acecording to Construction
Theorem I. By this AB is & oritiseal triangulation and, moreover, comntains
the 5566-diamond deda. This proves Theorem A}‘ C _
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Proof of Theorem A: The critical triangulation A (as required for s

proof of Theorem 4, see p.3) is derived from the oritical triangulations
4, and A5 using Construction Theorem II (p.20) na follows. (See Fig., p.27.)

Lot a' be a vertex of degrse 5 inm A o and let &', & ba two vertices of A
which are neighboring a' and saeh other. Ther let graph 82 be equal to
Lo-»(a',c')==(a', &) and dencte the two vertices other than a',c',3' on
the doundsry oircuit of S, by b’ (neighboring c') and ?' (neighboring ¥').
Now S, 1s an S,-graph by def. (see p.7).

Let B"fgh be a 5566-diamond in AB’ and let v" bs the vertex of AS which

is neighboring both b and h but 4is different from g. Denote by b" the
vertex of LB which is neighboring both v" and h but is different from D",
Finally denote by d" ths vertex of A5 which iz neighboring D" and £ dut

is different from & Thex: let I be the graph obtained from A5 by splitting
vertex v" into two vertices a™ and o" vwhere the cut is done along the
edges (b",v") and (v",D") so that a” is neighboring h in D, Now D is s
Degraph by def. (ses p.7) (and a"™ is of degree 3 in D ),

Let graph E be obtained from D by deleting edge (3",c") and renaming
vertex B" to e". Then E is an E-graph by def.

Let graph‘ﬁ be arother copy of graph E,(e.g. a mirror image of E) denoting
the vertices of ¥ corresponding to a",e",d" by a™' ,e"' ,da"', and the
vertices corresponding to f,g,h hy'?;E;K, and the vertices correaponding
40 ¥, 0" by B 5",

Finally let graph 4 be obtainsd from S,, E, and £ by (partially) ident-
ifying their boundary ocircuits as desoribed in the hypothesis of Comstruct-
ion Theorem II, By this A is a eritical triangulation and, moreover,
contains the 85666665-horseshoe afghahgf, Thus A has all the requirod
properties and Theorem A is proved,
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