

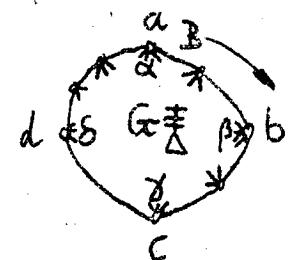
(Haken on Shimamoto's construction; October 20, 1971)

Special conventions:

- ✓ Graph: finite, planar, non-oriented graph without loop-edged.
- ✓ Triangulation: Graph as above which can be embedded into the 2-sphere in such a way that each connected component of 2-sphere minus graph is a triangle.
- ✓ 4-coloration: Assignment of one of four colors, named 1, 2, 3, 4, to each vertex of a graph so that any two vertices which are joined by an edge (of the graph) obtain different colors.
- ✓ Critical graph: Graph as above which i) does not admit a 4-coloration ii) has the property that if one arbitrary edge is subtracted then a 4-colorable graph is obtained.
- ✓ Minimal triangulation: Triangulation which is not 4-colorable such that every triangulation with fewer vertices is 4-colorable.
- ✓ Configuration: Graph triangulating a disk (so that the boundary of the disk consists of edges and vertices of the graph), but not being a single triangle.
- ✓ Boundary circuit of a configuration: Graph consisting of the boundary edges and vertices of that configuration.
- ✓ Complementary configuration (of a configuration H in a triangulation T where H is a sub-graph of T): The configuration different from H which is a sub-graph of T and has the same boundary circuit as H .
- ✓ Equivalence of two 4-colorations C_1, C_2 on same graph G : C_2 is obtained from C_1 by a permutation of colors (1, 2, 3, 4).
Note: We do not consider equivalent colorations as "equal".
- ✓ $\alpha\beta$ -Kempe chain (in a 4-colored graph G , where α, β are any two different colors 1, 2, 3, or 4): A connected component of the sub-graph $G_{\alpha\beta}$ of G which consists of all those vertices of G which have color α or color β and of all edges of G which join two such vertices.
Note: A single vertex may be a Kempe chain.
- ✓ Degree of a vertex in a graph G : number of edges originating at that vertex.
- ✓ First neighborhood of a graph G in a triangulation T (G a subgraph of T): The sub-graph N of T which contains precisely those vertices of T which belong to G or are edge-connected to vertices of G , and all edges of T which join two vertices of N .

1st Kempe chain theorem: Let G be a graph with a 4-coloration C . Let $K_{\alpha\beta}$ be an $\alpha\beta$ -Kempe chain in (G, C) (=graph G 4-colored by C). Then exchanging the colors α and β on $K_{\alpha\beta}$ (and leaving the colors on all other vertices of G fixed) yields a different 4-coloration $C' \neq C$ of G .

2nd Kempe chain theorem: Let G be a configuration with boundary circuit B and with a 4-coloration C . Let a, b, c, d be four distinct vertices lying in that order on B (see Fig.) and having the four different colors $\alpha, \beta, \gamma, \delta$. Let $K_{\alpha\gamma}$ be an $\alpha\gamma$ -Kempe chain in (G, C) which contains both vertices a and c . Then there does not exist a $\beta\delta$ -Kempe chain in (G, C) which contains both vertices b and d .



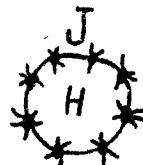
Proof: 1st theorem immediate from definition of 4-coloration and Kempe chain.

2nd theorem immediately from planarity of G and connectedness of Kempe chains.

Kempe chain-argument means: deriving new colorations C_1, C_2, \dots of graph G from a given coloration C by iterated use of the above theorems. In particular, if G is a configuration with boundary circuit B , deriving colorations which induce different colorations on B .

Abbreviated definition of D-reducibility:

A configuration H is called D-reducible if the following holds.



Assume that H is sub-graph of a triangulation T and denote by J the complementary configuration of H in T . Further assume that there exists a 4-coloration C of J . Then these assumptions allow to conclude by Kempe chain-argument applied to configuration J (and by nothing else) that there exists a 4-coloration C^* of J which can be extended to a 4-coloration of T .

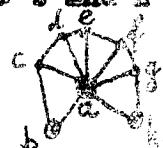
For more details see Hesseh: Untersuchungen zum Vierfarbenproblem, Kapitel I.

For a simple example of D-reduction see page 1 of these notes.

4-color-seminar / 3 Statement of the main theorem

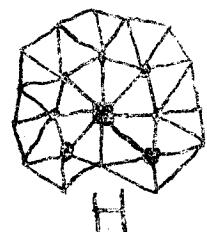
(Haken on Shimamoto's construction; October 20, 1971)

Theorem A: If the 4-color-conjecture is false then there exists a critical triangulation A which contains an 8566665-horseshoe; by this we mean a sub-graph which consists of a vertex a of degree 8 and seven neighbor vertices b, c, d, e, f, g, h of a (lying in that order around a) where vertices b and h have degree 5 and vertices c, d, e, f, g have degree 6 (see Fig.).



Theorem B: The configuration H which is a first neighborhood of a 8566665-horseshoe in a triangulation (see Fig.)

is D-reducible. (The boundary circuit of H has 14 vertices.)



Theorem C: A critical triangulation cannot contain a D-reducible configuration.

Theorems A, B, C imply that the 4-color-conjecture is true.

The proof of Theorem C is an immediate consequence of the definitions: Assume D-reducible configuration H lies in critical triangulation T . Then complementary configuration J of H in T contains less edges than T and thus (by def. of criticality) possesses a 4-coloration C . Then (by def. of D-reducibility) T itself possesses a 4-coloration (which extends a 4-coloration C^* of J that was derived from C by Kempe chain-argument). This is a contradiction (by def. of criticality). Q.E.D.

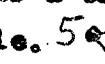
The proof of Theorem B is given by machine-computation. The computation was done on April 24, 1968 at BNL and will be checked by different programs on different machines.

The proof of Theorem A is given in this seminar following Shimamoto's construction: Graph A is constructed in the following steps.

Theorem A₀: If the 4-color-conjecture is false then there exists a critical triangulation A_0 which contains a vertex of degree 5.

Theorem A₁: If the 4-color-conjecture is false then there exists a critical triangulation A_1 (derived from A_0) which contains a 55-edge (i.e., an edge joining two vertices of degree 5).

Theorem A₂: If the 4-color-conjecture is false then there exists a critical triangulation A_2 (derived from A_1) which contains a 556-triangle.



Theorem A₃: If the 4-color-conjecture is false then there exists a critical triangulation A_3 (derived from A_2) which contains a 5566-diamond.

Finally Graph A is derived from A_3 .

(Haken on Shimamoto's construction, October 20, 1971)

Theorem 1: If the 4-color-conjecture is false then we have the following.

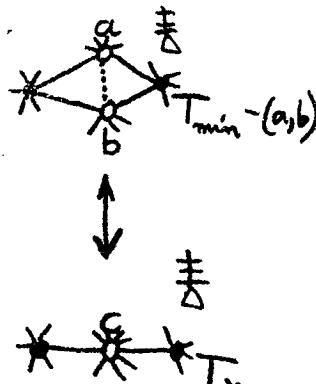
- (i) There exists a (planar) graph G which is not 4-colorable.
- (ii) There exists a (planar) triangulation T which is not 4-colorable.
- (iii) There exists a minimal triangulation T_{\min} (as defined on p.1).
- (iv) There exists a critical triangulation (as defined on p.1). In fact, every minimal triangulation is critical, but not vice versa.

Proof: (i) follows from the fact that every map (in the sense of geography) has a dual graph G (the vertices of G may be regarded as the capitals of the countries of the map; the edges may be regarded as direct roads joining the capitals of two countries which have a common border). A proper 4-coloration of a map (as considered in the 4-color-conjecture) induces a 4-coloration of the dual graph G and vice versa.

(ii) follows from the fact that graph G of (i) can be completed by adding edges to a triangulation T as demanded. (G is embedded into the 2-sphere, and if any connected component of 2-sphere minus G is not a triangle then it is triangulated by additional diagonal edges.) to become a triangl.

(iii) follows immediately from the fact that the triangulation T of (ii) has only finitely many vertices.

In order to prove (iv) we have to show: If (a, b) is an arbitrary edge in T_{\min} of (iii) (with endpoints denoted by a and b) then $T_{\min} - (a, b)$ is 4-colorable. We do this by observing that $T_{\min} - (a, b)$ is a configuration with boundary circuit B containing four boundary vertices (see Fig.). We obtain a triangulation T_* from $T_{\min} - (a, b)$ by "contracting" B (see Fig.) to a pair of edges (with common vertex c obtained from a and b by identification). Now T_* has one vertex less than T_{\min} and thus (by definition of minimality) possesses a 4-coloration C . Now reversing the contraction ("cutting T_* along the pair of edges" and "splitting" vertex c into vertices a, b) we obtain a 4-coloration C' of $T_{\min} - (a, b)$ (where a and b have the same color which vertex c had according to C). Q.E.D.



Theorem 2: If T is an arbitrary triangulation (of the 2-sphere) then

- (2.i) T does not contain any vertex of degree 0 or 1.
- (2.ii) T contains at least one vertex of degree < 6 .

4-color-seminar / 5 Ancient theorems proving Theorem A (Part 2)

(Haken on Shimamoto's construction; October 20, 1971)

Proof of Theorem 2: (2.1) follows immediately from the definition of triangulation.

(2.1i) is a consequence of Euler's formula

$$v + t - e = 2,$$

where v, t, e are the number of vertices, triangles, edges in T .

Since each edge is border of 2 triangles and each triangle has ≤ 3 border edges we have $t = \frac{2}{3}e$ and hence

$$v - \frac{1}{3}e = 2.$$

Let v_2, v_3, \dots, v_m be the number of vertices of degree 2, 3, ..., m in T where m is the greatest degree that actually occurs in T . Then we have

$$v = v_2 + v_3 + \dots + v_m \quad \text{and}$$

$$e = \frac{1}{2}(2v_2 + 3v_3 + \dots + mv_m).$$

Substituting these values for v and e we obtain

$$v_2 + v_3 + \dots + v_m - \frac{1}{6}(2v_2 + 3v_3 + \dots + mv_m) = 2, \quad \text{or}$$

$$4v_2 + 3v_3 + 2v_4 + v_5 - v_7 - 2v_8 - 3v_9 - \dots - (m-6)v_m = 12.$$

Hence, not all of v_2, v_3, v_4, v_5 can be zero. Q.E.D.

Theorem 3: The following configurations are D-reducible.

(3.1) A first neighborhood $N(2)$ of a vertex of degree 2 (in a triangulation).

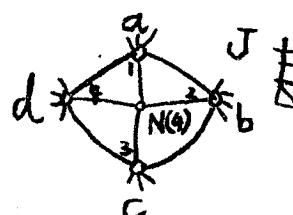
(3.1i) A first neighborhood $N(3)$ of a vertex of degree 3.

(3.1ii) A first neighborhood $N(4)$ of a vertex of degree 4.

Proof: Assume $N(j)$ lies in a triangulation T and its complementary configuration, J , in T possesses a 4-coloring C . The boundary circuit B of $N(j)$ has j vertices. To prove the theorem we have to derive a coloration C^* of J which can be extended over $N(j)$. In the case that $j < 4$ we simply take $C^* = C$. This induces a coloration on B in which at most 3 colors occur; thus we can extend this coloration over $N(j)$ by assigning the 4th color to the interior vertex of $N(j)$. So we are left with the case $j = 4$.

Denote the 4 boundary vertices of $N(4)$ by a, b, c, d

(see Fig.). In the case that C induces a coloration on B in which only 2 or 3 colors occur then we take



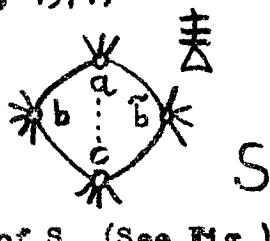
(Haken on Shiramoto's construction; October 20, 1971)

again $C^* = C$. In the case that C induces a coloration on B in which all 4 colors occur then we use the Kempe chain-argument as follows. There is a coloration C' of J which is equivalent to C and which assigns color 1 to a , color 2 to b , color 3 to c , color 4 to d . Now we distinguish two cases: Case 1: There is no 13-Kempe chain that contains both vertices a and c in (J, C') . In this case we obtain C^* from C' by exchanging the colors 1,3 in the 13-Kempe chain (in (J, C')) which contains vertex a . Case 2: There is a 13-Kempe chain in (J, C') that contains both vertices a and c . In this case we use the 2nd Kempe chain theorem for concluding that there is no 24-Kempe chain that contains both vertices b and d . Then we derive C^* from C' by exchanging the colors 2,4 in the 24-Kempe chain that contains vertex b . In each of the two cases C^* induces on B a coloration which uses only 3 colors. Thus C^* is extendable over $N(4)$. This finishes the proof of Theorem 3.

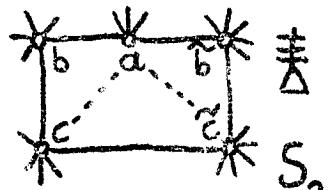
Proof of Theorem A_o: We claim that the critical triangulation of Theorem 1.(iv) contains a vertex of degree 5 and thus can be taken for A_o . By Theorem 2.(i), (ii) the triangulation contains at least one vertex of degree 2,3,4, or 5. By Theorem 3 and Theorem C the critical triangulation cannot contain any vertex of degree 2,3, or 4. This proves Theorem A_o .

(Haken on Shimamoto's construction; October 21, 1971)

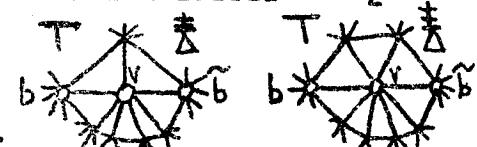
An S -graph is a configuration S which is obtained from a critical triangulation T by deleting one edge, say (a, c) . The vertices a and c on the boundary circuit of S are then called the special vertices of S . (See Fig.)



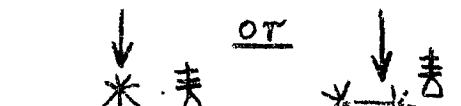
An S_2 -graph is a configuration S_2 which is obtained from a critical triangulation T by deleting two edges bordering to one triangle. We denote the vertices so that the deleted edges are (a, c) and (a, \tilde{c}) (see Fig.). Then vertex a is called the top vertex of S_2 , and vertices c and \tilde{c} are called the bottom vertices of S_2 .



A D -graph is a configuration D which is obtained from a critical triangulation T by "cutting along two consecutive edges", say (b, c) and (c, \tilde{c}) , and thus "splitting the vertex c " into two vertices a and c in such a way that vertex a is either of degree 3 or of degree 4 in D (see Fig.). (In all applications we shall depict a D -graph as in the lower part of the Fig. which is obtained from the upper part by an involution about the boundary circuit of D .) Vertex a is called the top vertex of D , and vertex c is called the bottom vertex of D .



OR



OR

4-color-seminar / 8 Statement of coloration theorem S and D
 (Haken on Shimamoto's construction; October 21, 1971)

Coloration theorem for S-graphs: Let S be an S-graph with special vertices a and c. Denote the vertices in the boundary circuit of S by $b \stackrel{a}{\overline{b}} \stackrel{c}{\overline{c}}$ (Fig.p.7). Then we have the following:

- (S.1) S is 4-colorable.
- (S.2) If C is a 4-coloration of S then the special vertices a and c have the same color.
- (S.3) If C is a 4-coloration of S such that a and c are colored 1, then in (S, C) there are a 12-Kempe chain, a 13-Kempe chain, and a 14-Kempe chain each of which contains both vertices a and c.
- (S.4) S admits a coloration inducing $\begin{smallmatrix} 1 \\ 2 \\ 2 \end{smallmatrix}$ (on the boundary circuit of S).
- (S.5) S admits a coloration inducing $\begin{smallmatrix} 1 \\ 2 \\ 3 \end{smallmatrix}$.
- (S.6) $S - (a, b)$ admits a color. ind. $\begin{smallmatrix} 1 \\ 3 \\ 3 \end{smallmatrix}$ or a color. ind. $\begin{smallmatrix} 1 \\ 3 \\ 4 \end{smallmatrix}$.
- (S.7) $S - (a, b)$ admits a coloration inducing $\begin{smallmatrix} 1 \\ 3 \\ 2 \\ 2 \end{smallmatrix}$.
- (S.8) $S - (b, c)$ admits a coloration inducing $\begin{smallmatrix} 1 \\ 3 \\ 1 \end{smallmatrix}$.

Coloration theorem for D-graphs:

Let D be a D-graph with boundary circuit $b \stackrel{a}{\overline{b}} \stackrel{c}{\overline{c}}$ (Fig.p.7; a = top vertex). Then we have the following:

- (D.1) D is 4-colorable.
- (D.2) If C is a 4-coloration of D then vertices a and c have different colors.
- (D.3) If C is a 4-coloration of D such that a, c are colored 1, 2 then in (D, C) there is a 12-Kempe chain which contains both vertices a and c.
- (D.4) D admits a coloration inducing $\begin{smallmatrix} 1 \\ 3 \\ 3 \end{smallmatrix}$.
- (D.5) D admits a coloration inducing $\begin{smallmatrix} 1 \\ 3 \\ 4 \end{smallmatrix}$.
- (D.6) $D - (a, b)$ admits a color. ind. $\begin{smallmatrix} 1 \\ 2 \\ 2 \end{smallmatrix}$ or a color. ind. $\begin{smallmatrix} 1 \\ 2 \\ 3 \end{smallmatrix}$.
- (D.7) $D - (a, b)$ admits a coloration ind. $\begin{smallmatrix} 1 \\ 3 \\ 2 \end{smallmatrix}$.
- (D.8) $D - (b, c)$ admits a coloration inducing $\begin{smallmatrix} 1 \\ 3 \\ 2 \end{smallmatrix}$.

(Haken on Shimamoto's construction; October 21, 1971)

Coloration theorem for S_2 -graphs:

Let S_2 be an S_2 -graph with boundary circuit $b \ a \ \bar{b} \ c \ \bar{c}$ (Fig. p.7; a = top).

Then we have the following:

(S_2 .1) S_2 is 4-colorable.

(S_2 .2) If C is a 4-coloration of S_2 then one of the bottom vertices c, \bar{c} has the same color as the top vertex a .

(S_2 .3) If C is a 4-coloration of S_2 such that a and c are colored 1, and \bar{b} is colored 2 then in (S_2, C) there are a 13-Kempe chain and a 14-Kempe chain each of which contains both vertices a and c .

(S_2 .4) S_2 admits a coloration inducing $\begin{matrix} 2 & 1 & 3 \\ & 1 & 2 \end{matrix}$.

(S_2 .5) S_2 admits a colorat. ind. $\begin{matrix} 3 & 1 & 3 \\ & 1 & 2 \end{matrix}$.

(S_2 .6) S_2 admits a coloration inducing $\begin{matrix} 4 & 1 & 3 \\ & 1 & 2 \end{matrix}$.

(S_2 .7) S_2 - (interior edge) admits a coloration inducing $\begin{matrix} 4 & 1 & 4 \\ 2 & 3 \end{matrix}$ (Case 1) or $\begin{matrix} 4 & 1 & 4 \\ 2 & 3 \end{matrix}$ (Case 2)

color. ind. $\begin{matrix} 3 & 1 & 2 \\ 2 & 3 \end{matrix}$ (Case 3) or $\begin{matrix} 3 & 1 & 4 \\ 2 & 3 \end{matrix}$ (Case 4)

(S_2 .8) S_2 - (a, b) admits a col. ind. $\begin{matrix} 1 & 1 & 2 \\ 2 & 3 \end{matrix}$ (Case 1) or $\begin{matrix} 1 & 1 & 4 \\ 2 & 3 \end{matrix}$ (Case 2)

(S_2 .9) S_2 - (b, c) admits a col. ind. $\begin{matrix} 2 & 1 & 2 \\ 2 & 3 \end{matrix}$ (Case 1) or $\begin{matrix} 2 & 1 & 4 \\ 2 & 3 \end{matrix}$ (Case 2)

(S_2 .10) S_2 - (c, \bar{b}) admits a col. ind. $\begin{matrix} 3 & 1 & 3 \\ 2 & 2 \end{matrix}$ (Case 1) or $\begin{matrix} 3 & 1 & 4 \\ 2 & 2 \end{matrix}$ (Case 2)

(Haken on Shimamoto's construction; October 21, 1971)

Coloration theorem for E-graphs:

$b \ a$

Let E be an E -graph with boundary circuit $e \ a \ c \ d \ e$ (Fig.p.7; a = top vertex; c = bottom vertex).

Then we have the following:

(E.1) E is 4-colorable.

(E.2) If C is a 4-coloration of E then a and c have different colors.

(E.3) If C is a 4-coloration of E such that a, c are colored 1, 2 then in

(E,C) there is a 12-Kempe chain which contains both a and c .

(E.4) E admits a coloration inducing $\begin{matrix} 3 & 1 \\ & 3 \end{matrix}$.

$\begin{matrix} 3 & 1 \\ & 2 \end{matrix}$

(E.5) E admits a col. ind. $\begin{matrix} 3 \\ 2 \end{matrix} \begin{matrix} 4 \\ 1 \end{matrix}$.

$\begin{matrix} 3 & 1 \\ & 4 \end{matrix}$

(E.6) E admits a coloration inducing $\begin{matrix} 4 \\ 2 \end{matrix} \begin{matrix} 1 \\ 1 \end{matrix}$.

$\begin{matrix} 3 & 1 \\ & 2 \end{matrix}$

(E.7) E admits a col. ind. $\begin{matrix} 4 \\ 2 \end{matrix} \begin{matrix} 3 \\ 1 \end{matrix}$.

$\begin{matrix} 2 \\ 1 \end{matrix} \begin{matrix} (Case 1) \\ (Case 2) \end{matrix}$

(E.8) $E - (interior edge)$ admits $\begin{matrix} a \\ a \end{matrix}$

$\begin{matrix} 2 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

col. ind. $\begin{matrix} 2 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

$\begin{matrix} 1 \\ 3 \end{matrix} \begin{matrix} (Case 1) \\ (Case 2) \end{matrix}$

(E.9) $E - (b, c)$ admits $\begin{matrix} a \\ a \end{matrix}$ col.

$\begin{matrix} 1 \\ 3 \end{matrix}$

$\begin{matrix} 3 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 3) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

col. ind. $\begin{matrix} 3 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 3) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

$\begin{matrix} 2 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

$\begin{matrix} 2 & 1 \\ & 3 \end{matrix}$

$\begin{matrix} 2 & 1 \\ & 2 \end{matrix}$

$\begin{matrix} 2 & 1 \\ & 3 \end{matrix}$

(E.10) $E - (a, b)$ admits $\begin{matrix} a \\ a \end{matrix}$

col. ind. $\begin{matrix} 1 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 1) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

$\begin{matrix} 2 & 4 \\ & 2 \end{matrix} \begin{matrix} (Case 1) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(E.11) $E - (c, d)$ admits $\begin{matrix} a \\ a \end{matrix}$ col. ind.

$\begin{matrix} 2 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(E.12) $E - (d, e)$ admits $\begin{matrix} a \\ a \end{matrix}$ col. ind.

$\begin{matrix} 2 & 1 \\ & 2 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(E.13) $E - (d, e)$ admits $\begin{matrix} a \\ a \end{matrix}$ coloration ind.

$\begin{matrix} 3 & 1 \\ & 3 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(E.14) $E - (e, a)$ admits $\begin{matrix} a \\ a \end{matrix}$ col. ind.

$\begin{matrix} 2 & 1 \\ & 1 \end{matrix} \begin{matrix} (Case 1) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(E.15) $E - (e, a)$ admits $\begin{matrix} a \\ a \end{matrix}$ coloration ind.

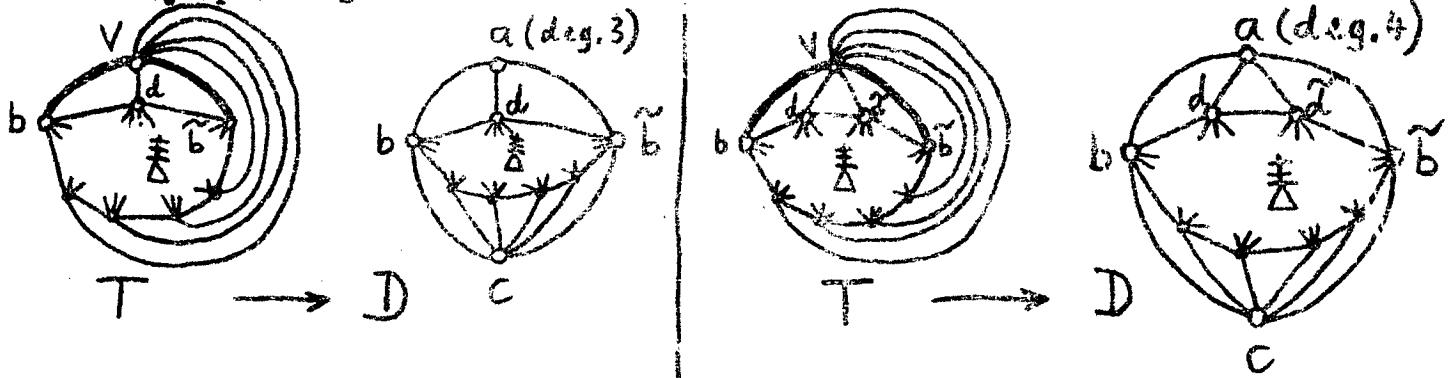
$\begin{matrix} 3 & 1 \\ & 1 \end{matrix} \begin{matrix} (Case 2) \\ or \begin{matrix} a \\ a \end{matrix} \end{matrix}$

(Haken on Shimamoto's construction; October 22, 1971)

Proof of (S.1): Since $S -$ critical graph minus edge it is 4-colorable.Proof of (S.2): Assuming the contrary, $T = S + (a, c)$ would be 4-colorable, and thus not critical. Contradiction.Proof of (S.3): Assuming the contrary, for at least one value of $a = 2, 3, 4$ the $1a$ -Kempe chain in (S, C) which contains vertex c would not contain vertex a . Then exchanging colors $1, a$ in that chain would yield a 4-coloration contradicting (S.2).Proof of (S.4): By (S.1) and (S.2) there is a 4-coloration of S which colors a and c the same. Thus there is an equivalent 4-coloration C of S which induces either $\begin{matrix} 1 & 1 \\ 2 & 2 \end{matrix}$ or $\begin{matrix} 2 & 3 \\ 1 & 1 \end{matrix}$. In the first case (S.4) is satisfied;in the second case, by (S.3) there is a 14-chain from a to c , and thus (By the 2nd Kempe chain theorem) the 23-chain (in (S, C)) which contains 3 does not contain b ; then exchanging colors $2, 3$ in that 23-chain yields a coloration of S as demanded in (S.4). This proves (S.4).Proof of (S.5): By (S.4) there is a coloration C of S inducing $\begin{matrix} 1 \\ 2 & 2 \\ 1 \end{matrix}$.Because of (S.3) the 23-chain containing 3 does not contain b ; thus exchanging 2 and 3 in that chain yields the demanded coloration.Proof of (S.6): Let (x, y) be an arbitrary interior edge of S , (i.e., an edge of S that does not belong to the boundary circuit of S , but may have an end point on that boundary circuit). Recall that $S + (a, c)$ is a critical triangulation T . Thus $T - (x, y)$ admits a 4-coloration, say C . This induces a coloration, for simplicity also called C , on $T - (x, y) - (a, c) = S - (x, y)$ which gives different colors to a and c . Then C is equivalent to a coloration of $S - (x, y)$ which induces one of the colorations $\begin{matrix} 1 & 1 \\ 3 & 3, 3 & 4 \\ 2 & 2 \end{matrix}$. Q.E.D.Proof of (S.7): $T = S + (a, c)$ is critical. Thus $T - (a, b)$ admits a 4-coloration C ; then C colors a and b with the same color (since otherwise T itself were 4-colorable). We regard C also as a coloration of $S - (a, b) = T - (a, b) - (a, c)$. Now C is equivalent to a coloration of $S - (a, b)$ as demanded.Proof of (S.8): Same as proof of (S.7) with roles of a and c exchanged.

(Haken on Shimamoto's construction; October 22, 1971)

Proof of (D.1): Recall that D is obtained from a critical triangulation T by splitting a vertex v of T into two vertices a and c (see Fig. below).



Case 1: a is of degree 3 in D . Denote the interior vertex of D which neighbors a by d ; (same notation in T). By deleting vertex a (and the 3 edges originating from it) from D yields a graph $D - a$ which is "same" as $T - (v, d)$ (i.e., the vertices and edges of $D - a$ are in 1-1 correspondence with the vertices and edges of $T - (v, d)$, c corresponding to v). Since T is critical $T - (v, d)$ admits a coloration; denote the corresponding coloration of $D - a$ by C . Now C can be extended to a coloration C' of D (since vertex a can be given a color different from the colors of $b, d, \tilde{b}, \tilde{c}$). Q.E.D.

Case 2: a is of degree 4 in D . Denote the interior vertices of D which neighbor a by d and \tilde{d} (neighboring b and \tilde{b} , respectively). Now graph $D - a$ is same as $T - (v, d) - (v, \tilde{d})$. Thus $D - a$ admits a 4-coloration, say C . If only 2 or 3 colors are used for the vertices $b, d, \tilde{d}, \tilde{b}$ then C extends to a 4-coloring of D as demanded. If all 4 colors are used for $b, d, \tilde{d}, \tilde{b}$, say $\alpha, \beta, \gamma, \delta$ then either the $\alpha\gamma$ -chain K containing \tilde{d} does not contain b or the $\beta\delta$ -chain K' containing \tilde{b} does not contain d (or both); thus we can change C into a 4-coloration C^* of $D - a$ by either exchanging α, γ in K or exchanging β, δ in K' ; then C^* uses only 3 colors on $b, d, \tilde{d}, \tilde{b}$ and thus can be extended to a 4-coloration of D as demanded. This takes care of Case 2 and proves (D.1).

Proof of (D.2): Assuming the contrary, C would yield a 4-coloration on the triangulation T obtained from D by identifying vertices a and c to vertex v . This would contradict the criticality of T . Q.E.D.

Proof of (D.3): Assuming the contrary, the 12-chain in (D, C) which contains a would not contain c . Then exchanging colors 1, 2 in that chain would yield a coloration of D contradicting (D.2). Q.E.D.

(Haken on Shimamoto's construction; October 22, 1971)

Proof of (D.4) and (D.5): Because of (D.1) and (D.2) There is a coloration C of D which colors vertices a, c, b 1, 2, 3 and by (D.1) provides for a 12-chain from a to c . Thus the 34-chain in (D, C) which contains \tilde{b} does not contain b . Exchanging colors 3, 4 in that chain yields a coloration C' . Now either C is as demanded in (D.4) and C' as in (D.5), or the other way.

Proof of (D.6): Let (x, y) be an interior edge in D and denote the corresponding edge in T also by (x, y) (where T is obtained from D by identifying a and c). Then $T - (x, y)$ admits a 4-coloration, say C . The corresponding 4-coloration of $D - (x, y)$ has then same color at a and c , and hence is equivalent to a coloration, say C' , which induces one of $\begin{matrix} 1 & 1 \\ 2 & 3 \end{matrix}$. Q.E.D.

Proof of (D.7): Case 1: a is of degree 3 in D (left of Fig. on p. 12).

By (D.5) there is a coloration C of D inducing $\begin{matrix} 3 & 4 \\ 2 & 3 \end{matrix}$ on b, \tilde{b} . Then, by (D.3), d has color 2. We regard C also as a coloration of $D - (a, b)$. Now in $(D - (a, b), C)$ the 13-chain K containing b does not contain a (since a does not have any neighbor vertex of color 3 in $D - (a, b)$). Thus exchanging the colors 1, 3 in K yields a coloration inducing $\begin{matrix} 1 & 4 \\ 2 & 3 \end{matrix}$ and thus being equivalent to the demanded coloration. Q.E.D.

Case 2: a is of degree 4 in D (right of Fig. on p. 12; notation as there).

As in Case 1 there is a coloration C of D inducing $\begin{matrix} 3 & 4 \\ 2 & 1 \end{matrix}$. Then by (D.3)

we have either

Case 2.1: \tilde{d} has color 2, and d has color 4, or

Case 2.2: d has color 2, and \tilde{d} has color 3.

In Case 2.1 we proceed as in Case 1 (i.e., we exchange 1, 3 in the 13-chain K in $(D - (a, b), C)$ which contains b).

In Case 2.2 we have the coloration $\begin{matrix} 1 & a \\ 2 & b \\ 3 & \tilde{b} \\ 4 & \tilde{d} \end{matrix}$ on $b, d, \tilde{b}, \tilde{d}$.

Then we exchange the colors 3, 4 in the 34-chain which contains \tilde{b} (and which by (D.3) does not contain \tilde{b}). This yields a coloration C' of D

inducing $\begin{matrix} 1 \\ 2 \\ 3 \\ 4 \end{matrix}$. Now we consider the 23-chain K' in (D, C') which

contains d and \tilde{d} . Then we have either

Case 2.2.1: K' does not contain c , or Case 2.2.2: K' contains c .

(Haken on Shimamoto's construction; October 22, 1971)

In Case 2.2.1 we exchange colors 2,3 in K' which yields a coloration C'' of D inducing $4 \overset{1}{3} 2 4$. Then we exchange 3,4 in the 34-chain in (D, C'') which contains b and d (and by (D.3) not \tilde{b}). This yields a coloration C''' of D which induces $3 \overset{1}{4} 2 4$. But then we are in the situation of Case 2.1 (with C''' in place of C) and we proceed as there (exchanging 1,3 in the 13-chain containing b in $(D - (a, b), C'''')$).

In Case 2.2.2 because of 23-chain K' joining \tilde{d} and a , the 14-chain K^* , in $(D - (a, b), C')$ which contains b does not contain a . Now we exchange 1,4 in K^* which yields a coloration equivalent to the demanded one. This finishes the proof of (D.7).

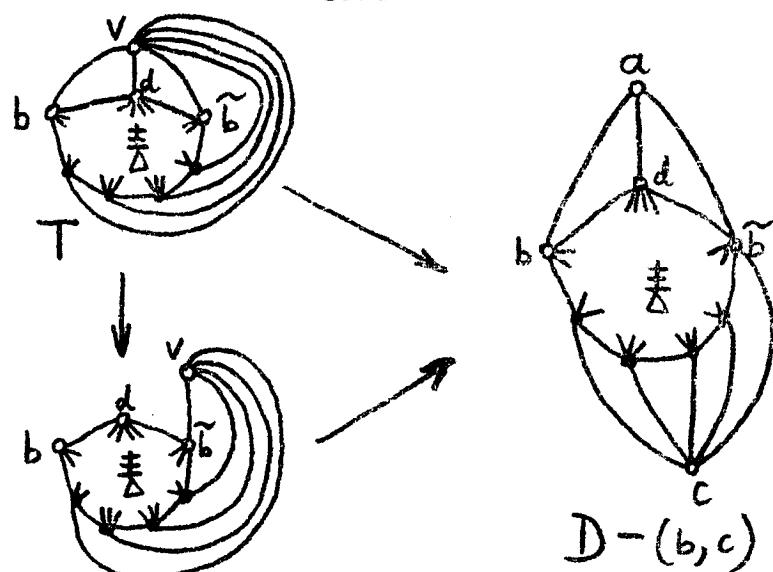
Proof of (D.8): Case 1: a is of degree 3 in D (Figs. pp. 12 and 15). $T - (v, b)$ admits a coloration, say C , which colors both v and b the same (since otherwise T would be not critical). We regard C also as a coloration of $T - (v, b) - (v, d)$ which is "same" as $D - (b, c) - a$. We regard C also as a coloration of $D - (b, c) - a$ (c corresponding to v). Then C extends to a coloration C' of $D - (b, c)$ (which assigns to a the color different from the colors of b, d, \tilde{b}). Now C' (coloring b and c the same) is equivalent to the coloration demanded. Q.E.D.

Case 2: a is of degree 4 in D (Figs. p. 12 right and p. 15). Again $T - (v, b)$ admits a coloring C which colors v and b the same. This serves also as a coloring of $T - (v, b) - (v, d) - (v, \tilde{d})$ which is "same" as $D - (b, c) - a$. Now either Case 2.1: C assigns only 2 or 3 colors to $b, d, \tilde{d}, \tilde{b}$, or Case 2.2: C assigns all 4 colors to $b, d, \tilde{d}, \tilde{b}$, say $\alpha, \beta, \gamma, \delta$.

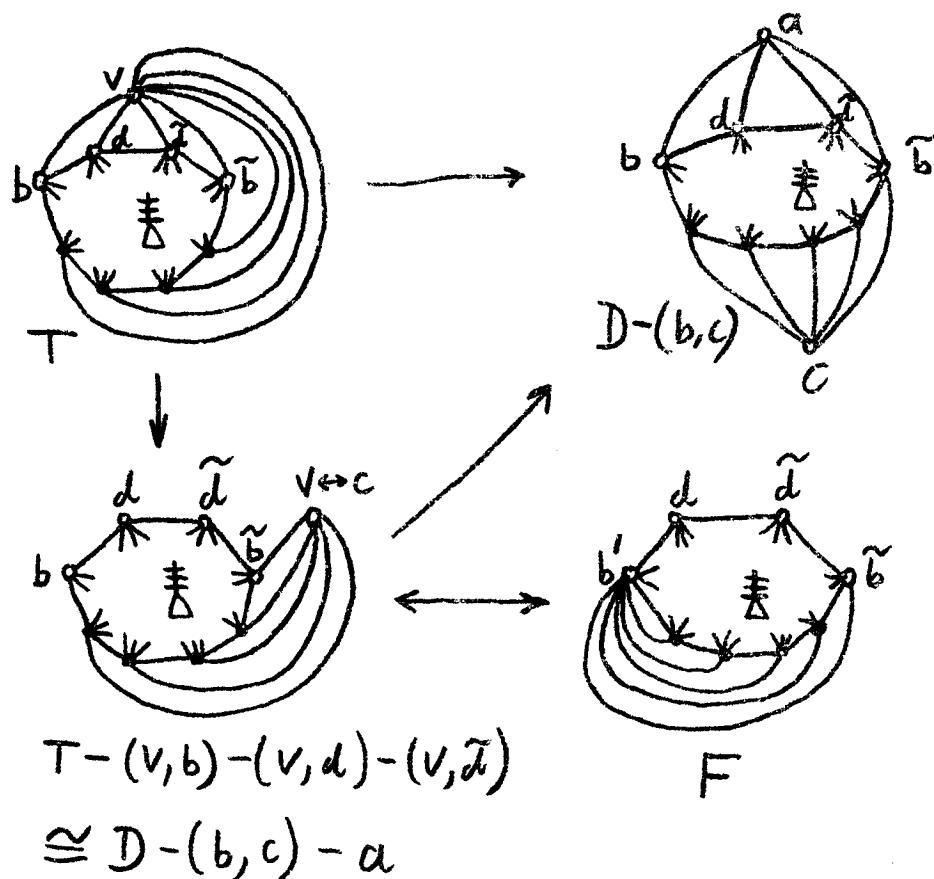
In Case 2.1, C extends to a coloration of $D - (b, c)$ (as in Case 1) which is equivalent to the demanded coloration.

In Case 2.2 we identify the vertices v and b of $T - (v, b) - (v, d) - (v, \tilde{d})$ to a vertex, say b' (see Fig. p. 15). This yields a graph F which is also colored by C (since both v and b are colored α). Now either the $\alpha\gamma$ -chain K in (F, C) which contains \tilde{d} does not contain b' or the $\beta\delta$ -chain K' which contains \tilde{b} does not contain d (or both). Then we either exchange α, γ in K or β, δ in K' in order to obtain a coloration C' of F in which only 3 colors are used for $b', d, \tilde{d}, \tilde{b}$. The corresponding coloration of $D - (b, c) - a$ extends then to a coloration of $D - (b, c)$ equivalent to the demanded one. Q.E.D.

(Haken on Shimamoto's construction; October 22, 1971)



Case 1



Case 2

(Haken on Shimamoto's construction, October 22, 1971)

Proof of (S_{2.1}): Since S₂ = critical graph minus edges it is 4-colorable.Proof of (S_{2.2}): Otherwise T = S₂ + (a,c) + (a,̄c) would be 4-colorable.Proof of (S_{2.3}): Otherwise at least one of ^{the} 1^a-chains ($\alpha=3,4$) in (S₂, C) which contains vertex a would not contain c. Then exchanging 1, a in that chain would yield a coloration of S₂ contradicting (S_{2.2}).Proof of (S_{2.4}): By (S_{2.1}) and (S_{2.2}) S₂ admits a coloration, say C,which induces $\begin{matrix} \beta & 1 & 3 \\ & 1 & 2 \end{matrix}$ (taken from a coloration of S-graph T - (a,c)).By (S_{2.3}) there is a 13-chain K and a 14-chain K' in (S₂, C). If $\beta=2$ then C is as demanded. If $\beta=3$ then we exchange colors 2,3 in the 23-chain which contains b (and because of K' does not contain ̄c). If $\beta=4$ then we exchange 2,4 in the 24-chain that contains b (and because of K does not contain ̄c). In each case we obtain a coloration as demanded.Proof of (S_{2.5}) and (S_{2.6}): Let C be a coloration of S₂ as in (S_{2.4}) inducing $\begin{matrix} 2 & 1 & 3 \\ 1 & 2 \end{matrix}$ and by (S_{2.3}) providing 13- and 14-chains from a to c.Then exchanging 2,3 in the 23-chain containing b gives a coloration as demanded for (S_{2.5}), and exchanging 2,4 in the 24-chain containing b yields a coloration as demanded for (S_{2.6}). Q.E.D.Proof of (S_{2.7}): Let (x,y) be an arbitrary interior edge in S₂ (and denote the corresponding edge in T also by (x,y)). Then T - (x,y) admits a coloration, say C, (which colors a,c,̄c with 3 different colors). The corresponding coloration of S₂ - (x,y) is then equivalent to the one needed.Proof of (S_{2.8}): T - (a,b) admits a coloration C which colors both a and b the same (since T is critical). Then the corresponding coloration of S₂ - (a,b) is equivalent to the demanded coloration, (since C assigns three different colors to a,c,̄c).Proof of (S_{2.9}): T - (b,c) admits a coloration C. Then the corresponding coloration on S₂ - (b,c) is equivalent to the demanded one.Proof of (S_{2.10}): T - (c,̄c) admits a coloration, say C. Then the corresponding coloration of S₂ - (c,̄c) is equivalent to the demanded coloration.

(Haken on Shimamoto's construction, October 23, 1971)

Proof of (E.1): Since $E = D - (b, c)$ this follows from (D.1), (see Fig.).

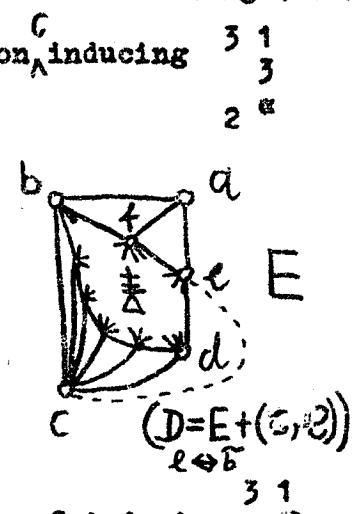
Proof of (E.2): Assuming the contrary, C would yield a corresponding 4-coloration of T (since T can be obtained from E by identifying a and c and the edges (b, a) and (b, c)).

Proof of (E.3): Assuming the contrary, exchanging 1, 2 in the 12-chain in (E, C) which contains c would yield a coloration of E contradicting (E.2).

Proof of (E.4) and (E.5): By (D.4) E admits a coloration C inducing

where α is either 1 or 4. By (E.3) the only interior vertex, say f , of E which neighbors a (see Fig.) is colored 2. Thus the 14-chain in (E, C) containing d does not contain a , and exchanging 1, 4 in that chain yields a coloration, say C' , of E which induces $\begin{matrix} 3 & 1 \\ 3 & \beta \\ 3 & \end{matrix}$ $\beta \neq \alpha$ ($\beta = 1$ or 4). Then C and C' are the colorations as demanded.

(by (E.5))



Proof of (E.6) and (E.7): By (E.5) E admits a coloration C inducing (inducing $\begin{matrix} 3 & 1 \\ 3 & \beta \end{matrix}$).

Exchanging 4, 3 in the 43-chain in (E, C) which contains $\begin{matrix} 2 & 1 \\ 2 & \beta \end{matrix}$ yields a coloration C' of E inducing $\begin{matrix} 3 & 1 \\ 4 & \beta \\ 2 & 1 \\ 2 & 3 \end{matrix}$. (Since by (E.3) K does not contain b).

Proof of (E.8): By (D.6) $E -$ (interior edge) admits a coloration C

inducing $\begin{matrix} 2 & 1 \\ 2 & \alpha \\ 1 & \alpha \end{matrix}$ ($\alpha = 3$ or 4) or a coloration C' inducing $\begin{matrix} 2 & 1 \\ 3 & \beta \\ 1 & \beta \end{matrix}$ ($\beta = 2$ or 4)).

Now C is equivalent to a coloration inducing $\begin{matrix} 2 & 1 \\ 3 & 1 \\ 1 & 3 \end{matrix}$; if $\beta = 2$ then C' is equivalent to a coloration inducing $\begin{matrix} 3 & 1 \\ 4 & 1 \\ 2 & 1 \\ 1 & 3 \end{matrix}$, and if $\beta = 4$ then C' is equivalent to a coloration ind. $\begin{matrix} 2 & 1 \\ 1 & 3 \end{matrix}$. In every case $E -$ (interior edge) admits a coloration as demanded.

Proof of (E.9): By (D.8) $E - (b, c)$ admits a coloration C inducing $\begin{matrix} 2 & 1 \\ 3 & \alpha \\ 2 & \alpha \end{matrix}$ where either Case 1: $\alpha = 1$ or Case 2: $\alpha = 4$. In Case 1, C is as demanded.

(Haken on Shimamoto's construction, October 23, 1971)

In Case 2 we consider the 23-chain, in $(E - (b, c), C)$ which contains e , and we have either Case 2.1: K contains neither a nor c , or Case 2.2: K contains at least one of a, c . 2 1

In Case 2.1 we exchange 2,3 in K and obtain a coloration inducing 2 2
2 4.

In Case 2.2 we exchange 1,4 in the 14-chain containing d (which because of K does not contain a) 2 1

and obtain a coloration inducing 3 1
2 2. This takes care of all cases. 1 1

Proof of (E.10): By (D.7) $E - (a, b)$ admits a coloration C inducing 3
2 α

where either Case 1: $\alpha = 1$ or Case 2: $\alpha = 4$. In Case 1, C is as demanded.

In Case 2, let K be the 23-chain in $(E - (a, b), C)$ which contains e , and we have either Case 2.1: K does not contain c , or Case 2.2: K contains c .

In Case 2.1, exchanging 2,3 in K yields a coloration as demanded.

In Case 2.2, exchanging 1,4 in the 14-chain containing d (which because of K contains neither a nor b) yields a coloration as demanded. Q.E.D.

Proof of (E.11): Since (c, d) is an interior edge of $D = E + (c, e)$, by (D.6) $E - (c, d)$ admits a coloration inducing 2 1
2 2 or a col. ind. 2 1
3. Moreover,

we must have (in the first case) $\alpha = 1$ and (in the second case) $\beta = 1$ since otherwise we would have a coloration of D coloring a and c the same, in contradiction to (D.2). Thus in every case we have a coloration equivalent to the demanded.

Proof of (E.12): Since (d, e) is an interior edge of $D = E + (c, e)$, by (D.6)

$E - (d, e)$ admits a coloration C inducing 2 1
2 2 or a col. ind. 2 1
3. Moreover,

in the first case we have $\alpha = 2$, and in the second case $\beta = 3$ (since otherwise we would have a coloration of D contradicting (D.2)). Thus in every case we have a coloration equivalent to the demanded.

Proof of (E.13): By (E.12) $E - (d, e)$ admits either (Case 1) a coloration C
2 1
3 1

inducing 2 or (Case 2) a coloration C' inducing 2.
1 2
1 2

In Case 1, let α be the color of vertex f (Fig.p.17) ($\alpha = 3$ or 4); let β be 3 or 4 but $\neq \alpha$. Exchanging 1, β in the 1 β -chain in $(E - (d, e), C)$

(Haken on Shimamoto's construction; October 23, 1971)

which contains c (but does not contain a) ^{yields a} coloration equivalent to one
 $\begin{matrix} 3 & 1 \\ 3 & \end{matrix}$
 inducing $\begin{matrix} 3 \\ 3 \end{matrix}$ as demanded.

In Case 2 let K be the 14-chain in $(E - (d, e), C')$ which contains c . Then either Case 2.1: K contains a , or Case 2.2: K does not contain a .
 In Case 2.1 we exchange $2, 3$ in the 23-chain in $(E - (d, e), C')$ that contains b (and because of K neither contains d nor e) and obtain a coloration C^*
 $\begin{matrix} 2 & 1 \\ 2 & \end{matrix}$
 inducing $\begin{matrix} 2 \\ 1 \end{matrix}^2$. Then we apply the procedure described in Case 1 with C^* instead of C , which takes care of Case 2.1.

In Case 2.2 we exchange $1, 4$ in K and obtain a coloration equivalent to one as demanded. This proves (E.13).

Proof of (E.14): $T - (v, \tilde{b})$ (see Fig. on p.7) admits a 4-coloration in which (since T is critical) v and \tilde{b} are colored the same; an equivalent coloration, say C , of $T - (v, \tilde{b})$ colors v and \tilde{b} both 1. This yields a coloration, also called C , of the graph $D - (a, \tilde{b}) - (c, \tilde{b})$ (as obtained from $T - (v, \tilde{b})$ by splitting vertex v into a and c) which assigns color 1 to a, \tilde{b} , and c . But $D - (a, \tilde{b}) - (c, \tilde{b})$ is same as $E - (a, e)$ (where \tilde{b} is renamed " e "). Thus C is equivalent to a coloration C' of $E - (e, a)$ $\begin{matrix} 2 & 1 \\ 1 & \end{matrix}$ inducing $\begin{matrix} 1 \\ 1 \end{matrix}^{\alpha}$,

where α is either 2 or 3. In each case C' is equivalent to a coloration as demanded.

Proof of (E.15): Exchanging the roles of b and \tilde{b} in the proof of (D.7) we conclude that $D - (a, \tilde{b})$ admits a coloration C inducing $\begin{matrix} 1 \\ 3, 1 \end{matrix}^2$. Since $E - (e, a) = D - (a, \tilde{b}) - (\tilde{b}, c)$ (\tilde{b} being named " e " in E) $\begin{matrix} 2 \\ 2 \end{matrix}^{\alpha}$ this is also a coloration of $E - (e, a)$ inducing $\begin{matrix} 3 & 1 \\ 1 & \end{matrix}^2$ where α is either 3 or 4.

In each case C is equivalent to a coloration as demanded.

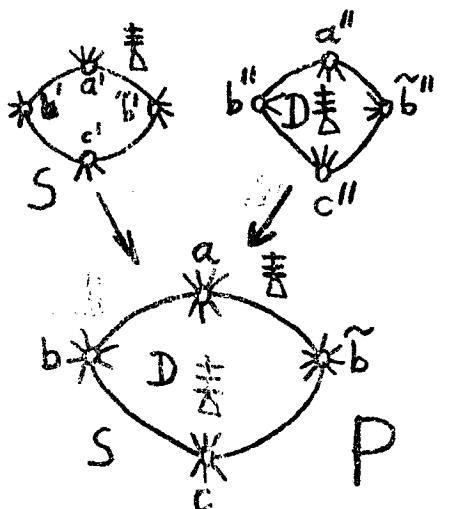
(Haken on Shimamoto's construction; October 23, 1971)

Construction Theorem I: Let S be an S -graph with boundary circuit $b' \tilde{b}'$ (special vertices a' and c').

Let D be a D -graph with boundary circuit $b'' \tilde{b}''$ (top vertex a'' , bottom vertex c'').

Let graph P be obtained from S and D by identifying their boundary circuits so that a', a'' are identified to a , b', b'' to b , etc. (see Fig.).

Then P is a critical triangulation.



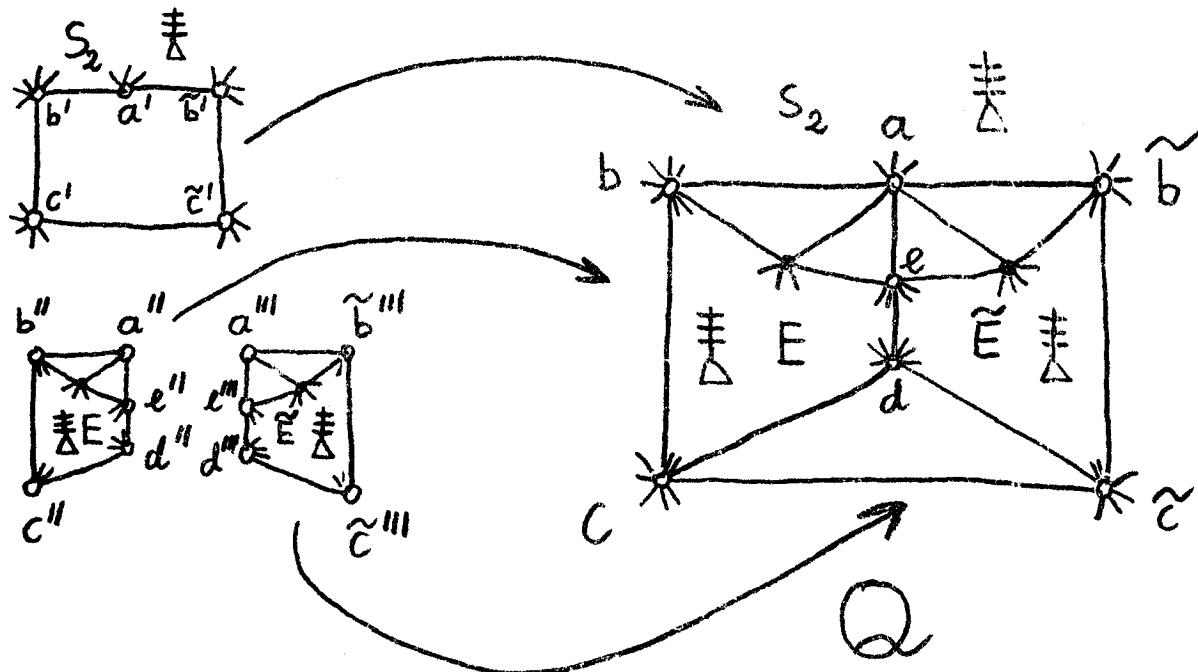
Construction Theorem II: Let S_2 be an S_2 -graph with boundary circuit $c' \tilde{c}'$ (top vertex a' , bottom vertices c' and \tilde{c}').

Let E be an E -graph with boundary circuit $c'' \tilde{d}''$ (top vertex a'' , bottom c'').

Let \tilde{E} be another E -graph with boundary circuit $d''' \tilde{c}'''$ (top vertex a''' , bottom vertex \tilde{c}''').

Let graph Q be obtained from S_2 , E , and \tilde{E} by (partially) identifying their boundary circuits so that a', a'' , and a''' are identified to a , and b', b'' are identified to b , and \tilde{b}', \tilde{b}''' are identified to \tilde{b} , etc. (see Fig. below).

Then Q is a critical triangulation.



(Haken on Shimamoto's construction; October 23, 1971)

Proof of Construction Theorem I: P is a triangulation by construction. P is not 4-colorable since a 4-coloration C of P would either contradict (S.2) or contradict (D.2).It remains to be proved that $P -$ (arbitrary edge) is 4-colorable.

We prove this by means of the coloration theorems S and D (p.8).

(I.1) $P -$ (interior edge of S) admits a 4-coloration which induces on $b \tilde{b}$
either $\begin{matrix} 1 \\ 2 \end{matrix} \begin{matrix} 3 \\ 2 \end{matrix}$ by $\begin{cases} (S.6), \text{Case 1} \\ (D.4) \end{cases}$, or $\begin{matrix} 1 \\ 2 \end{matrix} \begin{matrix} 4 \\ 2 \end{matrix}$ by $\begin{cases} (S.6), \text{Case 2} \\ (D.5) \end{cases}$.(I.2) $P -$ (interior edge of D) admits a 4-coloration which induces
either $\begin{matrix} 1 \\ 1 \end{matrix} \begin{matrix} 2 \\ 2 \end{matrix}$ by $\begin{cases} (D.6), \text{Case 1} \\ (S.4) \end{cases}$, or $\begin{matrix} 1 \\ 2 \end{matrix} \begin{matrix} 3 \\ 2 \end{matrix}$ by $\begin{cases} (D.6), \text{Case 2} \\ (S.5) \end{cases}$.(I.3) $P - (a, b)$ admits a 4-coloration which induces $\begin{matrix} 1 \\ 2 \end{matrix} \begin{matrix} 3 \\ 3 \end{matrix}$ by $\begin{cases} (S.7) \\ (D.7) \end{cases}$.(I.3) $P - (a, \tilde{b})$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of b and \tilde{b} in (I.3) (and in the proofs of (S.7) and (D.7) which are used for proving (I.3)).(I.4) $P - (b, c)$ admits a 4-coloration which induces $\begin{matrix} 1 \\ 2 \end{matrix} \begin{matrix} 3 \\ 2 \end{matrix}$ by $\begin{cases} (S.8) \quad (1 \leftrightarrow 2) \\ (D.8) \end{cases}$.(I.7) $P - (\tilde{b}, c)$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of b and \tilde{b} in (I.4).(I.1) . . . (I.7) imply that $P -$ (arbitrary edge) is 4-colorable. Q.E.D.Proof of Construction Theorem II: Q is a triangulation by construction. Q is not 4-colorable since a 4-coloration C of Q would either contradict (S₂.2) or contradict (E.2).It remains to be proved that $Q -$ (arbitrary edge) is 4-colorable.We prove this by means of the coloration theorems S₂ (p.9) and E (p.10).(II.1) $Q -$ (interior edge of S_2) admits a 4-coloration inducing on $b \tilde{a} \tilde{b}$ either $\begin{matrix} 4 \\ 2 \end{matrix} \begin{matrix} 1 \\ 1 \end{matrix} \begin{matrix} 4 \\ 3 \end{matrix}$ by $\begin{cases} (S_2.7), \text{Case 1} \\ (E.4)(\tilde{3} \leftrightarrow 4) \\ (E.4)(2 \leftrightarrow 3 \leftrightarrow 4) \end{cases}$, or $\begin{matrix} 3 \\ 2 \end{matrix} \begin{matrix} 1 \\ 1 \end{matrix} \begin{matrix} 2 \\ 3 \end{matrix}$ by $\begin{cases} (S_2.7), \text{Case 2} \\ (E.6)(\text{on } E) \\ (E.6)(2 \leftrightarrow 3)(\text{on } \tilde{E}) \end{cases}$

or (cont. next p.)

(indicating the permutation of colors in (E.4))

(Hakem on Shimamoto's construction; October 24, 1971)

$$\begin{array}{ll} 3 & 1 & 4 \\ \text{or} & 4 \\ 2 & 1 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 7), \text{Case 3} \\ \text{by } \begin{cases} (E.6) \\ (E.4)(2 \rightarrow 3 \rightarrow 4) \end{cases} \end{cases} \quad \begin{array}{ll} 4 & 1 & 2 \\ 4 \\ 2 & 1 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 7), \text{Case 4} \\ \text{by } \begin{cases} (E.4)(3 \leftrightarrow 4) \\ (E.6)(2 \leftrightarrow 3) \end{cases} \end{cases}$$

(II.2) $Q - ($ interior edge of E) admits a 4-coloration which induces

$$\begin{array}{ll} 2 & 1 & 2 \\ \text{either} & 2 \\ 1 & 3 & 4 \end{array} \quad \begin{cases} (S_2 \cdot 5)(3 \rightarrow 2 \rightarrow 4) \\ \text{by } \begin{cases} (E.8), \text{Case 1} \\ (E.5)(3 \rightarrow 2 \rightarrow 4) \end{cases} \end{cases} \quad \begin{array}{ll} 3 & 1 & 3 \\ 2 \\ 1 & 3 & 4 \end{array} \quad \begin{cases} (S_2 \cdot 5)(2 \leftrightarrow 4) \\ \text{by } \begin{cases} (E.8), \text{Case 2} \\ (E.7)(2 \leftrightarrow 4) \end{cases} \end{cases}$$

$$\begin{array}{ll} 4 & 1 & 3 \\ \text{or} & 2 \\ 1 & 3 & 4 \end{array} \quad \begin{cases} (S_2 \cdot 4)(2 \leftrightarrow 4) \\ \text{by } \begin{cases} (E.8), \text{Case 3} \\ (E.7)(2 \leftrightarrow 4) \end{cases} \end{cases}$$

(II.2) $Q - (\tilde{E})$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of E and \tilde{E} , of b and \tilde{b} , and of c and \tilde{c} in (II.3) (and in the proofs of the coloration theorems needed there).

(II.3) $Q - (c, d)$ admits a 4-coloration which induces

$$\begin{array}{ll} 2 & 1 & 2 \\ \text{either} & 2 \\ 1 & 1 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 8)(2 \leftrightarrow 3) \\ \text{by } \begin{cases} (E.11), \text{Case 1} \\ (E.4)(2 \leftrightarrow 3) \end{cases} \end{cases} \quad \begin{array}{ll} 3 & 1 & 2 \\ 2 \\ 1 & 1 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 4)(2 \leftrightarrow 3) \\ \text{by } \begin{cases} (E.11), \text{Case 2} \\ (E.4)(2 \leftrightarrow 3) \end{cases} \end{cases}$$

(II.3) $Q - (\tilde{c}, d)$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of E and \tilde{E} , of b and \tilde{b} , and of c and \tilde{c} in (II.3) (and in the proofs of the coloration theorems needed there).

(II.4) $Q - (c, \tilde{c})$ admits a 4-coloration which induces

$$\begin{array}{ll} 3 & 1 & 3 \\ \text{either} & 4 \\ 2 & 1 & 2 \end{array} \quad \begin{cases} (S_2 \cdot 10), \text{Case 1} \\ \text{by } \begin{cases} (E.6) \\ (E.6) \end{cases} \end{cases} \quad \begin{array}{ll} 3 & 1 & 4 \\ 4 \\ 2 & 1 & 2 \end{array} \quad \begin{cases} (S_2 \cdot 10), \text{Case 2} \\ \text{by } \begin{cases} (E.6) \\ (E.4)(3 \leftrightarrow 4) \end{cases} \end{cases}$$

(II.5) $Q - (b, c)$ admits a 4-coloration which induces

$$\begin{array}{ll} 2 & 1 & 2 \\ \text{either} & 2 \\ 2 & 4 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 9), \text{Case 1} \\ \text{by } \begin{cases} (E.9), \text{Case 1} \\ (E.5)(2 \leftrightarrow 3) \end{cases} \end{cases} \quad \begin{array}{ll} 2 & 1 & 2 \\ 3 \\ 2 & 1 & 4 \end{array} \quad \begin{cases} (S_2 \cdot 9), \text{Case 1, } (3 \leftrightarrow 4) \\ \text{by } \begin{cases} (E.9), \text{Case 2} \\ (E.6)(2 \rightarrow 4 \rightarrow 3) \end{cases} \end{cases}$$

$$\begin{array}{ll} 2 & 1 & 4 \\ \text{or} & 2 \\ 2 & 4 & 3 \end{array} \quad \begin{cases} (S_2 \cdot 9), \text{Case 2} \\ \text{by } \begin{cases} (E.9), \text{Case 1} \\ (E.7)(2 \rightarrow 3 \rightarrow 4) \end{cases} \end{cases} \quad \begin{array}{ll} 2 & 1 & 3 \\ 3 \\ 2 & 1 & 4 \end{array} \quad \begin{cases} (S_2 \cdot 9), \text{Case 2, } (3 \leftrightarrow 4) \\ \text{by } \begin{cases} (E.9), \text{Case 2} \\ (E.4)(2 \leftrightarrow 4) \end{cases} \end{cases}$$

(II.5) $Q - (\tilde{b}, \tilde{c})$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of E and \tilde{E} , of b and \tilde{b} , and of c and \tilde{c} in (II.5).

(Haken on Shimamoto's construction; October 24, 1971)

(II.6) $Q = (a, b)$ admits a 4-coloration which induces

either $\begin{matrix} 1 & 1 & 2 \\ 2 \\ 2 & 4 & 3 \end{matrix}$ by $\begin{cases} (S_2.8), \text{Case 1} \\ (E.10), \text{Case 1, or} \\ (E.5)(2 \leftrightarrow 3) \end{cases}$, $\begin{matrix} 1 & 1 & 2 \\ 3 \\ 2 & 1 & 4 \end{matrix}$ by $\begin{cases} (S_2.8), \text{Case 1, } (3 \leftrightarrow 4) \\ (E.10), \text{Case 2} \\ (E.6)(3 \leftrightarrow 2 \leftrightarrow 4) \end{cases}$

or $\begin{matrix} 1 & 1 & 4 \\ 2 \\ 2 & 4 & 3 \end{matrix}$ by $\begin{cases} (S_2.8), \text{Case 2} \\ (E.10), \text{Case 1, or} \\ (E.7)(2 \rightarrow 3 \rightarrow 4) \end{cases}$, $\begin{matrix} 1 & 1 & 3 \\ 3 \\ 2 & 1 & 4 \end{matrix}$ by $\begin{cases} (S_2.8), \text{Case 2, } (3 \leftrightarrow 4) \\ (E.10), \text{Case 2} \\ (E.4)(2 \leftrightarrow 4) \end{cases}$.

(II.6) $Q = (a, \tilde{b})$ admits a 4-coloration. A proof of this is obtained by exchanging the roles of E and \tilde{E} , of b and \tilde{b} , and of c and \tilde{c} in (II.6).(II.7) $Q = (a, c)$ admits a 4-coloration which induces

either $\begin{matrix} 2 & 1 & 2 \\ 1 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.5)(2 \leftrightarrow 3) \\ (E.14), \text{Case 1} \\ (E.15), \text{Case 1, } (2 \leftrightarrow 3) \end{cases}$, or $\begin{matrix} 2 & 1 & 4 \\ 1 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.6)(2 \rightarrow 3 \rightarrow 4) \\ (E.14), \text{Case 1} \\ (E.15), \text{Case 2, } (2 \leftrightarrow 3) \end{cases}$

or $\begin{matrix} 3 & 1 & 2 \\ 1 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.4)(2 \leftrightarrow 3) \\ (E.14), \text{Case 2} \\ (E.15), \text{Case 1, } (2 \leftrightarrow 3) \end{cases}$, or $\begin{matrix} 3 & 1 & 4 \\ 1 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.4)(2 \rightarrow 3 \rightarrow 4) \\ (E.14), \text{Case 2} \\ (E.15), \text{Case 2, } (2 \leftrightarrow 3) \end{cases}$.

(II.8) $Q = (d, e)$ admits a 4-coloration which induces

either $\begin{matrix} 2 & 1 & 2 \\ 2 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.5)(2 \leftrightarrow 3) \\ (E.12), \text{Case 1} \\ (E.13), \text{Case 1, } (2 \leftrightarrow 3) \end{cases}$, or $\begin{matrix} 2 & 1 & 4 \\ 2 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.6)(2 \rightarrow 3 \rightarrow 4) \\ (E.12), \text{Case 1} \\ (E.13), \text{Case 2, } (2 \leftrightarrow 3) \end{cases}$

or $\begin{matrix} 3 & 1 & 2 \\ 2 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.4)(2 \leftrightarrow 3) \\ (E.12), \text{Case 2} \\ (E.13), \text{Case 1, } (2 \leftrightarrow 3) \end{cases}$, or $\begin{matrix} 3 & 1 & 4 \\ 2 \\ 1 & 2 & 3 \end{matrix}$ by $\begin{cases} (S_2.4)(2 \rightarrow 3 \rightarrow 4) \\ (E.12), \text{Case 2} \\ (E.13), \text{Case 2, } (2 \leftrightarrow 3) \end{cases}$.

(II.1) . . . (II.8) imply that $Q = (\text{arbitrary edge})$ is 4-colorable. Q.E.D.

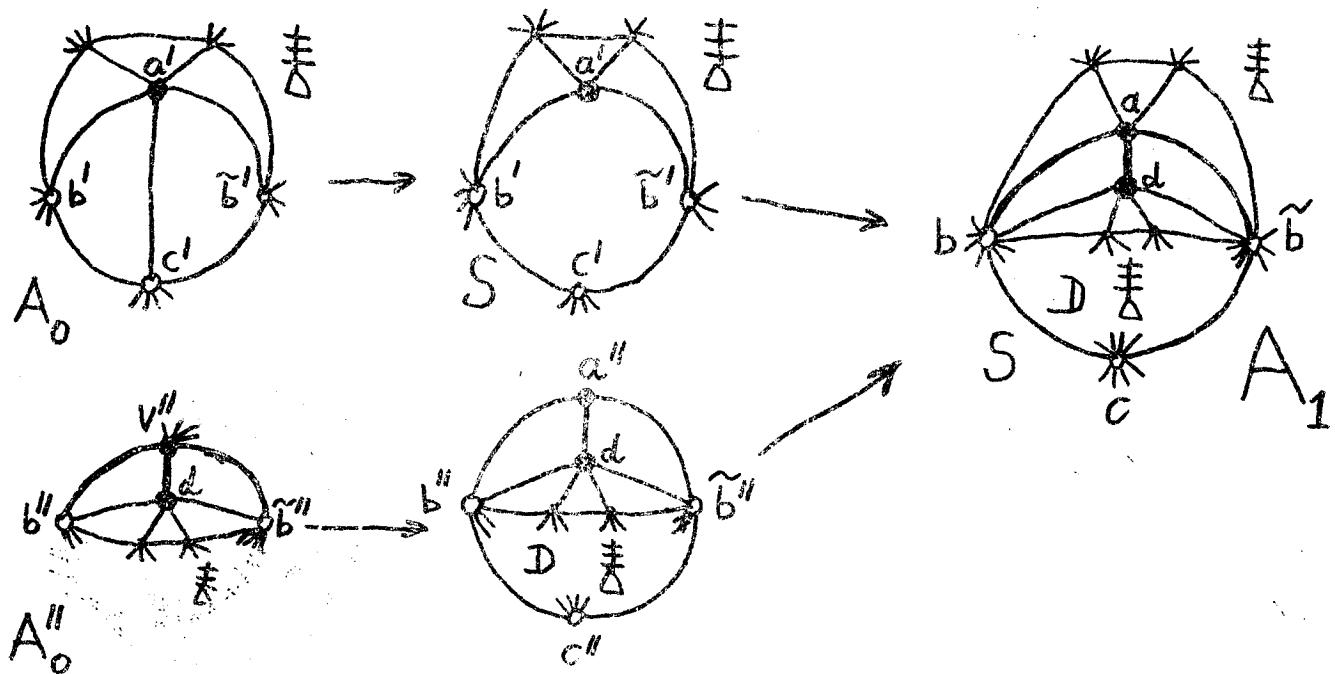
(Haken on Shimamoto's construction, October 24, 1971)

Proof of Theorem A₁: The critical triangulation A₁ (as required for a proof of Theorem A₁, see p.3) is derived from the critical triangulation A₀ using Construction Theorem I (see p.20) as follows. (See Fig. below.)

Let a' be a vertex of degree 5 in A₀, and let c' be a vertex of A₀ neighboring a'. Then let graph S be equal to A₀ - (a', c') and denote the two other vertices on the boundary circuit of S by b' and \tilde{b}' . Now S is an S-graph by def. (see p.7).

Let d be a vertex of degree 5 in another copy, say A_{0''}, of A₀, and let b'', v'', \tilde{b}'' be three neighboring vertices of d in A_{0''} lying around d in that order. Then let D be the graph obtained from A_{0''} by splitting vertex v'' into vertices a'' and c'' where the cut is done along the edges (b'', v'') and (v'', \tilde{b}'') so that a'' is neighboring d in D. Now D is a D-graph by def. (see p.7) (and a'' is of degree 3 in D having neighbor vertices b'', d, \tilde{b}'').

Finally A₁ is obtained from S and D by identifying their boundary circuits in such a way that a' and a'' are identified to a vertex a, and that b', b'' are identified to b, etc. Now A₁ is a critical triangulation by Construction Theorem I. Moreover, A₁ contains the 55-edge (a, d). Thus A₁ has all the required properties and Theorem A₁ is proved.

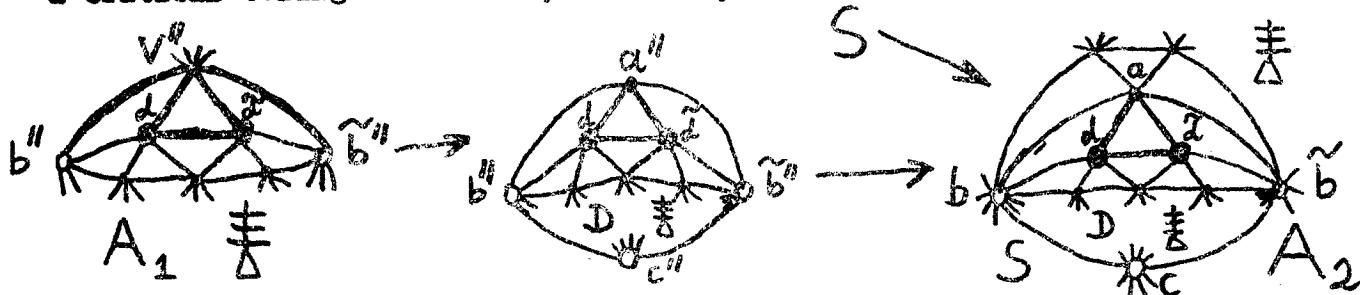


(Haken on Shimamoto's construction; October 24, 1971)

Proof of Theorem A_2 : Let S-graph S be as in the proof of Theorem A_1 .

Let (d, \tilde{d}) be a 55-edge in the critical triangulation A_1 and let v'' be a vertex of A_1 neighboring both d and \tilde{d} . (See Fig. below.) Denote by b'' (by \tilde{b}'') the vertex of A_1 which neighbors both v'' and d (and \tilde{d}) but is different from \tilde{d} (from d). Then let D be the graph obtained from A_1 by splitting vertex v'' into two vertices a'' and c'' where the cut is done along the edges (b'', v'') and (v'', \tilde{b}'') so that a'' is neighboring d and \tilde{d} in D. Now D is a D-graph by def. (and a'' is of degree 4 in D).

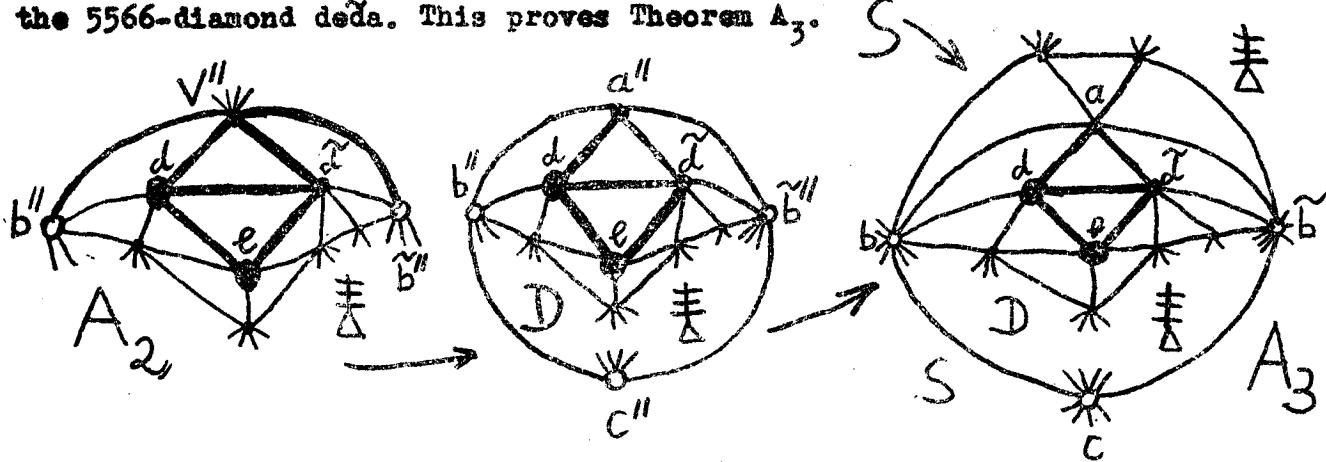
Then A_2 is obtained from S and D by identifying their boundary circuits as described in the hypothesis of Construction Theorem I. By that A_2 is a critical triangulation and, moreover, contains the 556-triangle $dd\tilde{d}$. Q.E.D.



Proof of Theorem A_3 : Let S-graph S be as in the proof of Theorem A_1 .

Let ded be a 556-triangle in the critical triangulation A_2 and let v'' be the vertex of A_2 which neighbors both d and \tilde{d} but is different from e . (See Fig. below.) Then let D be the graph obtained from A_2 by splitting v'' into a'' and c'' precisely as described in the proof of Theorem A_2 .

Then A_3 is obtained from S and D by identifying according to Construction Theorem I. By this A_3 is a critical triangulation and, moreover, contains the 5566-diamond $deda$. This proves Theorem A_3 .



(Haken on Shimamoto's construction, October 24, 1971)

Proof of Theorem A: The critical triangulation A (as required for a proof of Theorem A, see p.3) is derived from the critical triangulations A_0 and A_3 using Construction Theorem II (p.20) as follows. (See Fig. p.27.)

Let a' be a vertex of degree 5 in A_0 , and let c' , \tilde{c}' be two vertices of A_0 which are neighboring a' and each other. Then let graph S_2 be equal to $A_0 - (a', c') - (a', \tilde{c}')$ and denote the two vertices other than a', c', \tilde{c}' on the boundary circuit of S_2 by b' (neighboring c') and \tilde{b}' (neighboring \tilde{c}'). Now S_2 is an S_2 -graph by def. (see p.7).

Let $\tilde{b}''fgh$ be a 5566-diamond in A_3 , and let v'' be the vertex of A_3 which is neighboring both \tilde{b}'' and h but is different from g . Denote by b'' the vertex of A_3 which is neighboring both v'' and h but is different from \tilde{b}'' . Finally denote by d'' the vertex of A_3 which is neighboring \tilde{b}'' and f but is different from g . Then let D be the graph obtained from A_3 by splitting vertex v'' into two vertices a'' and c'' where the cut is done along the edges (b'', v'') and (v'', \tilde{b}'') so that a'' is neighboring h in D . Now D is a D -graph by def. (see p.7) (and a'' is of degree 3 in D).

Let graph E be obtained from D by deleting edge (\tilde{b}'', c'') and renaming vertex \tilde{b}'' to e'' . Then E is an E -graph by def.

Let graph \tilde{E} be another copy of graph E , (e.g. a mirror image of E) denoting the vertices of \tilde{E} corresponding to a'', e'', d'' by a''', e''', d''' , and the vertices corresponding to f, g, h by $\tilde{f}, \tilde{g}, \tilde{h}$, and the vertices corresponding to b'', c'' by $\tilde{b}''', \tilde{c}'''$.

Finally let graph A be obtained from S_2 , E , and \tilde{E} by (partially) identifying their boundary circuits as described in the hypothesis of Construction Theorem II. By this A is a critical triangulation and, moreover, contains the 85666665-horseshoe $efgh\tilde{h}\tilde{g}f$. Thus A has all the required properties and Theorem A is proved.

(Notes on Nakamoto's construction, October 24, 1971)

