From Remediation to Proliferation:
Mainstreaming the Accessibility of Web

University Library Innovation Fund Report

August 21, 2017

X}linOiS Librahy

\ n
o OOV
({;;d A 6(%
g\z % -
<
NN %
‘ AllyFirst
<for CKEditor>
%

-9'
) N 1d
Wegne, - 510
St.library-

Submitted by:
e JaEun Jemma Ku, Ph.D., Principal Investigator, A11yFirst Project
e Jon Gunderson, Ph.D., Principal Investigator, A11yFirst Project
e Nicholas Hoyt, Development and Design Lead, A11yFirst Project
In partnership with:

e Dena Strong, Technology Services, University of lllinois

Table of Contents
Abstract

Introduction
Project Goals

Project Process
Conceptual Modeling
Functionality
Actions
1) Block actions vs. text/inline actions
2) Block insertions and splits
3) Block selection, conversion and deletion
4) Relationships
Requirement Gathering
Feature Documentation
Development Priority
Type of Accessibility Check
Code Requirements
User Workflow
Choice of Codebase
Two Editors: TinyMCE and CKEditor
Comparison
Pre-packaged/Pre-existing Features
Functionality/Methods
Test Case

Project Deliverables
Editor Toolbar Design/Configuration
Editor Design
Editor Configuration
Design Specification
Example of Heading Plugin
Accessibility Feature Examples
A11yFirst Heading plugin
1. Restricting Author’s Choices for Heading Level
3. Using Heading Levels
3. Focus on Accessibility Education/Guidance
A11yFirst Link Plugin
Core Idea
User Flow and Warning Dialog Functionality
Milestones
Strategic direction
A11yFirst editor 1.0 - Completed

N O 0 00 N N NN NOO OO O O 0101 O o1 O N)

N N DN DN D A A = - _
W NN OO O 0WWNOO OO W WwWwWDNDNNMNDNDDN

-_—

A11yFirst editor 1.1 - Completed
A11yFirst editor 2.0 - In process
A11yFirst editor 2.X - Upcoming
Library WordPress CMS Deployment
Schedule for Staged Deployment
Requirement by Library Wordpress CMS
Must Have Features
Nice To Have Features

Usability Testing
Introduction
Design
Process
Findings
Future Usability Testing Plans

Ongoing Evolution
Project Resources
Continuous Improvement
Collaboration with the School of Information Science
Collaboration with Other Campus Units
Collaboration with CKsource

Project Websites
A11yFirst Editor Demo
A11yFirst Project Documentation
Original Proposal

Project Expense
Credits

Appendix
Presentation
Workshop
Accepted Conference Proposal
Submitted Conference Proposal

23
23
23
23
23
24
24
24

24
24
26
27
27
28

28
28
28
28
28
28

29
29
29
29

29
29

30
30
30
30
31

Abstract

The goal of this project is innovating the web content authoring model through changes
in the Content Management System’s (ie. WordPress) WYSIWYG (What You See Is
What You Get) Editor user interface and through just-in-time feedback to authors during
the content authoring process.

To accomplish these goals, the project team started with a thorough conceptual
modeling process while benchmarking the ONENET text editor developed by the State
of lllinois Department of Human Services. After requirement gathering, the project team
documented text editor features and chose the code base, CKSource, to work with.

Project deliverables included content authoring interface modifications including: text
editor toolbar design, heading plugin with accessibility help information, link plugin,
block format plugin, inline style plugin, element level style features, and inserted image
plugin (in progress). In addition, helpful usability testing data, which validates and
improves on the A11yFirst Editor design, was delivered. It is expected that A11yFirst
editor will be deployed after fall semester 2017 in the University of lllinois Library’s
WordPress instance, rather than immediately, to minimize current workflow disruption.

Going forward, Disability Resources and Educational Services (DRES) at the University
of lllinois will provide financial resources for a student programmer’s work throughout
the year. After that, developers on campus will be invited to contribute. Eventually, the
A11yFirst project will became an open source project in a GitHub repository so any
developer can contribute.

Ongoing evolution for the project includes multi faceted collaboration: (1) user research
for the conceptual model of the A11yFirst editor with School of Information Science, (2)
A11yFirst Editor deployment to campus WordPress services (such as
publish.illinois.edu) and Drupal CMS services and (3) sharing the project knowledge
with CKsource, the creator of CKEditor, as well as sending feedback on Ul design
improvement.

The project team appreciates the University Library’s support very much — it made this
innovative project possible.

Introduction

The goal of A11yFirst editor project is changing the content authoring model through changes in Content
Management System (ie. WordPress) WYSIWYG (What You See, What You Get) Editor user interface
and through just in time feedback to authors during the authoring process.

Project Goals

1. Decreasing the likelihood that inaccessible content pages are created.

The learning curve to understand accessibility requirements and recommendations (i.e. WCAG rules and
ARIA roles) is steep. Once the principles are understood, they must be implemented in efficient working
code, a task that is beyond the capability of most end users and requiring time to develop expertise that
most developers do not have.

2. Forestalling expensive and ineffective retrofitting of accessibility.

Past practice has been to hold a small number of Library IT staff solely responsible for ensuring the
accessibility of numerous web pages created by library subject experts and staff. This requires that
inefficient and largely ineffective remediation work be completed after services have been developed,
typically via the application of one-off solutions.

3. Creating an inclusive online environment for students, faculty and staff with disabilities.
Inclusive lllinois 2015 impact report addresses well how “people from diverse backgrounds working

together identify more creative solutions to problems.” These efforts will also contribute to enhancing web
content quality in teaching and research.

4. Prevention of Office for Civil Right (OCR) complaints.

Higher educational institutions face liability for inaccessible web content and technologies. Several
universities have already gone through OCR complaints for not ensuring equal access to its website for
individuals with disabilities.

5. Growth of In-house web accessibility expertise in the University Library.

The University Library has been getting immense assistance from the Disability and Resources and
Educational Services (DRES) to release IT projects such as the Library Gateway Website project, Easy
Search and the Interlibrary Loan site. DRES helps with IT projects across all campus units, not only
library web projects. As a result of being a campus-wide service, DRES is in high demand and it usually
takes a few weeks to receive final accessibility reports. If the University Library can grow in-house experts
through this innovation project, Library web projects will be more efficient while ensuring IT accessibility
with the close partnership with DRES.

http://www.inclusiveillinois.illinois.edu/supporting_docs/2015%20Inclusive%20Illinois%20Impact.pdf%203

Project Process

Conceptual Modeling

As the first step of designing the A11yFirst editor, the project group started with the “Conceptual
modeling” process. Conceptual modeling represents a group of vocabularies that relate to a user’'s task
domain when using a text-editor. It attempts to provide terminology for the objects, attributes and
available actions that map a user’s tasks when creating or editing a document. Conceptual modeling of
the A11yFirst editor is documented in A11y First Project: CKEditor Modifications — Conceptual Model
v4.1

The core idea of the conceptual model defines the functionality of A11yFirst editor.
Functionality

Proactively promote thinking in terms of structural blocks as the main components of a document
For specific block types, prompt the user for semantic clarification (e.g., whether list is bulleted or
numbered, image text alternative), or when appropriate, simply limit the available choices (e.g.,
heading levels)

® Make it possible to style inline content, but discourage users from reaching for this type of action
on first impulse (i.e., first, think semantically)

Here is the example of how conceptual model distinguishes various types of actions for A11yFirst editor.

Actions
1) Block actions vs. text/inline actions

Need to make a clear distinction between text/inline actions and block actions.
For example, for all of the block objects that contain text/inline, all of the text/inline actions are
available, and thus can be factored out when considering the available actions on a particular
block.

® Need to encourage/prioritize block actions (insert block, convert to another block) over text/inline

styling actions.

2) Block insertions and splits

e A block can only be inserted at the top level of the parent context, which may be (1) the
document, (2) a table data cell or (3) a block quote.
A paragraph can be split into two paragraphs by using the enter key.
A list can be split into two lists using the enter key twice in succession.

https://github.com/nhoyt/text-editor/blob/master/ConceptualModel-02.md
https://github.com/nhoyt/text-editor/blob/master/ConceptualModel-02.md

e These actions are necessary in order to insert a block, i.e. the user is not permitted to insert a
block within a paragraph or list.

e Likewise, tables need a mechanism for splitting into two tables.
In general, blocks need to maintain their integrity (you can't easily demolish them by inserting
random blocks within them) but must also be easily divided.

3) Block selection, conversion and deletion

e Need to make it clear how blocks are selected, to allow modification of their properties, and what
needs to happen in order to delete them.

e For example, a paragraph can be converted to a heading or list item by placing the cursor at the
beginning, end or anywhere in between and choosing an action.

e On the other hand, a paragraph can be deleted only by deleting all of its text/inline content. A list
can be deleted only by deleting all of its list items, and list items are deleted by deleting their
text/inline content.

4) Relationships

A simple block (heading, paragraph, list item) contains text/inline only

A compound block (list, table, table column, table row) contains sub-blocks (list items, data cells)
A table data cell is a hybrid -- it may contain text/inline or blocks (e.g. paragraphs, list/list items)
An image is unique -- no visible text is required (optional caption?) but it must have alt text (a
short description) and may have a long description

Requirement Gathering

The project team worked on high level project goals as summarized by three aspects.

1. Technical restrictions (not allowing users to skip heading levels)
2. Guides for users in creating accessible content via Q & A wizard style interface or dialog Ul
3. Accessibility evaluations such as just-in-time checks for accessibility.

Feature Documentation

The team also spent time on analyzing the OneNet Text editor user interface and implementation by the
State of lllinois by referring to the OneNet Functional Requirement page. As a result, we documented
each of the A11yFirst plugin features and created guidelines pertain to project priority, type of checker,
code requirements, and user interface/user’s work flow." Later this documentation became design specific
documentation in the A11yFirst project GitHub repository. Here are some guidelines we used for feature
documentation.

' These information can be be found at feature documentation page

https://publish.illinois.edu/a11yfirst/high-level-project-goals
http://173.167.182.20/page.aspx?item=7
https://publish.illinois.edu/a11yfirst/documentation/feature-documentation

Development Priority?

High: Must have feature for launch of version 1.0
Medium: Nice to have, but not required for version 1.0
Low: Feature we’d like to have eventually, but is likely high development cost to lower benefit

Type of Accessibility Check

e Real Time: These checks are done without any user initiation of the check. It would be tied to
event listeners (in the CKEditor API) for element insert/modification, and would either correct
problems automatically or give the user an immediate warning/encouragement to modify.

e Manual Check: The user must initiate this check either from the checks menu or a “check
everything” option, or it will be triggered on save/update.

Code Requirements

e Automatically produce valid, semantically-correct HTML 5 code.
e Allow authorized users to edit HTML directly.
e Use HTML Tidy (or a similar code validator) to check/correct HTML code edited by users.

User Workflow

Leverage vertical menu: Where it makes sense, present drop down (like) menus.
Where it is more complex, open a modal window on selecting that feature/group (and in some
cases a hybrid, where links in the menu can themselves open a modal).

e When prompting users about errors, visually display the elements to make it easier to see how
they are are related (see OneNet)-most likely as separate visualizations (one for headings, one
for lists, etc.)

e Run some checks on requesting publish (not on save draft/autosave) and prompt user to
verify/remediate (possible) errors.

Choice of Codebase

Two Editors: TinyMCE and CKEditor

To code the A11yFirst WYSIWYG editor, our team researched options for a code base. We could not use
OneNet Text source code since it was developed in-house for specific document needs and the code was
developed more than 10 years ago. Therefore, we decided to code from existing WYSIWYG code bases
not to reinvent the wheel. The competing two candidates were TinyMCE by Ephox and CKeditor by
CKsource. In spite of TinyMCE as default editor for WordPress, the team decided to go with CKeditor
source code base due to well documented API, more options for plugins (ie: 464 plugin for Ckeditor vs 48
plugins for TinyMCE), active developers community in CKSource(116,648 registered developers in

2 This uses a prioritization technique, MoSCoW method

https://www.tinymce.com/
https://en.wikipedia.org/wiki/MoSCoW_method
https://ckeditor.com/

CKsource vs 23,140 in TinyMCE), and free plugin for core functionality such as “Paste from Word” in
CKsource. (This functionality comes with paid enterprise version in TinyMCE, but is free in CKEditor).

Comparison

This comparison is based on internet articles® and feature and API documentation from TinyMCE and

CKEditor sites.

Pre-packaged/Pre-existing Features

Criteria

CKEditor

TinyMCE

Most Recent Version

4.4.1

4.2.7

Documentation http://docs.ckeditor.com/ https://www.tinymce.com/docs/
License GPL, LGPL, MPL / Commercial | LGPL, Commercial

Developer Guide

CKEditor Guides

TinyMCE Developer Guides

APl Documentation

CKEditor APl documentation

TinyMCE API Reference

Other Available SDKs (Software
Development Kit)

Plugin, Widget, Skin

Plugin, Themes and Skins

3 *http://www.krizalys.com/article/ckeditor-vs-tinymce

**http://socialcompare.com/en/comparison/javascript-online-rich-text-editors

(It is also confirmed that all the bugs are closed for CKEditor)

http://docs.ckeditor.com/#!/guide
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
http://socialcompare.com/en/comparison/javascript-online-rich-text-editors
https://www.tinymce.com/docs/api/
http://docs.ckeditor.com/#!/guide
http://www.krizalys.com/article/ckeditor-vs-tinymce
https://www.tinymce.com/docs/advanced/
https://en.wikipedia.org/wiki/Mozilla_Public_License

Accessibility Checker

al1y checker (Available as
Add-on and with payment)

Documentation/Demo

al1y checker (Available as
plugin and with Enterprise
subscription)

Demo (check the bottom of the

page)

Installing Add-ons/Plugins
Options

Add-ons repository (464
plugins)

Plugin list (48)

Expert
Opinion/Recommendation

Matt King, APG member
(Accessibility expert is working
on CKEditor project)

Default text editor for
WordPress. WordPress is the
choice of University of lllinois
Library Content Management
System (CMS).

Keyboard Accessibility

Keyboard shortcuts

Keyboard shortcuts

Browser Compatibility

Desktop environments:

-Internet Explorer (8.0 and 9.0 —
close to full support, 10 and 11
— full support, 9.0 Quirks Mode
and 9.0 Compatibility Mode —
limited support.)

-Firefox, Chrome, Safari,
Microsoft Edge, Opera: Latest
stable release — full support.

Reference

Firefox (3.0+), IE (8+), Chrome
(1.0+), Opera (11.0+), Safari
(5+)

3.x version reference

https://www.tinymce.com/pricing/
https://www.tinymce.com/docs/get-started/work-with-plugins/
https://www.tinymce.com/pricing/
https://www.tinymce.com/pricing/
http://docs.ckeditor.com/#!/guide/dev_accessibility_checker
http://docs.ckeditor.com/#!/guide/dev_browsers
http://archive.tinymce.com/wiki.php/TinyMCE3x:Browser_compatiblity
https://www.tinymce.com/docs/plugins/a11ychecker/
http://ckeditor.com/addons/plugins/all
https://www.tinymce.com/docs/advanced/accessibility/
http://docs.ckeditor.com/#!/guide/dev_shortcuts
http://ckeditor.com/addon/a11ychecker

10

Copy-Paste (from Word)

Available as Free add-on
function

Copy-paste from Word plugin is
available in Premium(payment
required) features

Image Upload and Handling

Feature rich*

Limited options*

MoxieManager: Image/File
manager server side

component. (Paid component)

Developer Community

Forum

e Registered developers:

TinyMCE forum

e Registered users:

116,648 23,140
e Number of downloads: e Number of downloads:
16,419,009 unknown
e StackOverflow CKEditor e WordPress default
forum editor
Functionality/Methods
Criteria CKEditor TinyMCE

Functionality Overview

End-user features/Integration
features

N/A

10

http://ww.moxiemanager.com/
http://docs.ckeditor.com/#!/guide/dev_features
http://stackoverflow.com/tags/ckeditor/info
http://stackoverflow.com/tags/ckeditor/info
http://docs.ckeditor.com/#!/guide/dev_features
http://ckeditor.com/Forums/CKEditor
http://community.tinymce.com/forum/

11

Saving Content

Getting and Saving Data in CKEditor
(Use CKEditor Javascript API, Ajax)

When the <form> is submitted
the TinyMCE editor mimics the
behavior of a normal HTML
<textarea>during the post.

Filtering Content

Advanced Content Filter (Filters
incoming HTML content by
transforming and deleting disallowed
elements, attributes, classes, and
styles.)

Content filtering (The way the
editor handles the input and
output of content.)

How Plugin Works

CKEditor Plugins

Internal Plugin Code Example
(hint: use plugins string)

External Code Example (hint:
use external_pluginsobject)

Copy and Paste from Word

Paste from Word (Free plugin for the
editor)

Paste From Word (included in
the TinyMCE Enterprise
download)

Consistency (Content
Editable, Editable Content)

e CKEDITOR.dom.range

e CKEDITOR.plugins.context

e Menu
CKEDITOR.htmlParser

tinymce.dom.Selection.getRng()

11

https://www.tinymce.com/docs/configure/integration-and-setup/#external_plugins
http://ckeditor.com/addon/pastefromword
http://docs.ckeditor.com/#!/guide/dev_savedata
http://docs.ckeditor.com/#!/api/CKEDITOR.plugins
http://docs.ckeditor.com/#!/api/CKEDITOR.htmlParser
http://sdk.ckeditor.com/samples/acf.html
http://docs.ckeditor.com/#!/api/CKEDITOR.dom.range
https://www.tinymce.com/docs/enterprise/paste-from-word/
https://www.tinymce.com/docs/configure/integration-and-setup/#plugins
http://docs.ckeditor.com/#!/api/CKEDITOR.plugins.contextMenu
https://www.tinymce.com/docs/configure/content-filtering/
http://docs.ckeditor.com/#!/api/CKEDITOR.plugins.contextMenu

12

Test Case

Document Object Model (DOM) selection/manipulation and Copy and Paste functionality were tested for
two editors. In particular, DOM selection and manipulation was easier in CKEditor.

Project Deliverables

Editor Toolbar Design/Configuration

Based on the conceptual model, the team configured the CKeditor toolbar differently from the default
CKeditor toolbar to integrate accessible content authoring concepts into practice.

Editor Design

[Figure] Initial Toolbar configuration on November 2016

Heading v List v Link » Image ¥ Table ¥ Block Format ¥ ?

]

X D @ « » Inline Style v Q Check A11y ¥ ABY

[caption: Started with menu style action items based on objects.]

[Figure] Toolbar configuration on January 2017

Heading ¥ List ¥ CONNCY) [l E Block Format ¥ Check A11y ¥

X O @ « » B I Inline Style ¥ Q AB{ ?
[caption: Started to deploy button-type menus, which is the default Ul for CKEditor. Heading, List, Block

format, inline style object menus were retained.]

Current editor design is reflected in the A11yFirst editor demonstration site and it will continue to be
modified as we add more A11yFirst plugins.

Editor Configuration

12

https://a11yfirst.library.illinois.edu/

13

The process for configuring the toolbar using CKbuilder is below.

1. Use the standard configuration as the starting point
2. Select the following from the available plugins
e Code Snippet
Content Templates
Find / Replace

Language
e Show Blocks

3. These plugins may be needed later
e Accessibility Checker
e Dropdown menu manager
e List Style
e Panel Button
4. A11yFirst plugins and their dependencies

Plugins

e A11yFirst editor configuration
Blockformat
Heading
Inline style
Element level styling features
Inserted image plugin

API Dependencies
e A11yFirst editor configuration
Blockquote
Code snippet
Menu button
Richcombo
Remove format

Design Specification

Some of the most intense work by the project team focused on the design specification for the A11yFirst
Editor.

For example, heading plugin design specification states accessibility requirements, user interface
components, task descriptions such as insert heading or convert an existing text block to a heading.

Example of Heading Plugin

Overview

The Heading plugin is rendered as a menu button with a menu that provides the following items:

13

http://ckeditor.com/addon/showblocks
http://ckeditor.com/addon/dropdownmenumanager
http://ckeditor.com/addon/a11ychecker
http://ckeditor.com/addon/panelbutton
http://ckeditor.com/addon/language
http://ckeditor.com/addon/find
http://ckeditor.com/addon/liststyle
http://ckeditor.com/addon/codesnippet
http://ckeditor.com/addon/templates

14

e Level n: allows the user to insert a new heading, convert an existing text block to a heading
element, modify the level of an existing heading element or remove the heading format of an
existing heading element.

o When the cursor is positioned on an empty line, inserts a new heading element of the
chosen level.
o When the cursor is positioned on an existing text block that is not already a heading,
converts it to a heading element of the chosen level.
o When the cursor is positioned on an existing heading element:
m If the menu item that corresponds to the current level of the heading (denoted
by a check mark) is selected, removes the heading format;
m Otherwise, changes the level of the heading element to the chosen level.

e Remove format: enabled only when the cursor is positioned on an existing heading element.
Removes the heading format from the text block that corresponds to the cursor position.

e Help: provides help documentation on working with headings.

Accessibility Requirements

Heading levels should convey consistent structure in the document according to the following rules:
1. The level of the first heading should be the highest level permitted in the document.
2. If the highest level permitted is Level 1, there should typically be only one heading of that level.
3. Any subsequent heading should have either the same level (unless that would violate the
multiple use restriction for Level 1), a higher level (again, avoiding the multiple use restriction
for Level 1), or the next-lower level (without skipping any levels) in relation to the heading that
precedes it.

User Interface Components

1. Menu Button
e Appearance
o Label: Heading
o To the right of the label: a down arrow to indicate that the button displays a menu when
activated
e Behavior

When the menu button is activated it displays a menu
2. Menu
Menu items

Level 1 or Level 1 (Reserved for Document Title) based on configuration
Level 2

Level 3

Level 4

Level 5

Level 6

Normal text

14

15

Behavior

Help (calls A11yFirst Help with param for headings)

When the menu button is activated, the menu it displays contains all possible heading levels (2
through 6) but only the available heading levels are enabled.
Also, if the current context (based on cursor position or unambiguous selection) is an existing
heading, the menu item corresponding to its level should be checked.

o Example 1

o There are currently no headings in the document. Menu displays only Level 2 enabled,
i.e. it's the only available choice.
Example 2
The closest previous heading has level 2. Menu displays Level 2 and Level 3 enabled.
Example 3
The closest previous heading has level 3. Menu displays Level 2, Level 3 and Level 4
enabled.
o Task Descriptions

O O O O

Task 1 — Insert heading

User Actions

Result : A new block of text formatted as a heading with the select level is created.
Task 2 — Convert an existing text block to a heading

User Actions

Result : The block of text defined by the cursor location is converted to a heading element of the
selected level.

Task 3 — Remove heading format from existing heading

User Actions

Position cursor on a blank line within the document.

Select Heading menu button: menu is displayed (see Menu — Behavior)

Select desired heading level from menu

Type heading text and optionally press return to end heading block and start a new
paragraph.

Position cursor at the beginning or end of, or within, a block of text.
Select Heading menu button: menu is displayed (see Menu — Behavior)
Select desired heading level from menu

Position cursor at the beginning or end of, or within, a heading block.
Select Heading menu button: menu is displayed (see Menu — Behavior)
Select one of the following in the menu:
o The checked Level n item, i.e., the item that corresponds to the level of the heading
defined by the cursor position

15

16

o Remove format

Result : The block of text defined by the cursor location is converted from a heading element to a
plain paragraph.
Task 4 — Get help on adding headings to a document
User Actions

e Select Heading menu button: menu is displayed

e Select Help from menu
Result : A dialog box is displayed that contains help documentation for the Heading feature.

To Do
e Generalize the algorithm for getAvailableHeadings to account for various configuration options.

Accessibility Feature Examples

A11yFirst Heading plugin
1. Restricting Author’s Choices for Heading Level

The first principle of Web accessibility is based on semantic structure of the documents. Well structured
documents with appropriate heading levels help users with disabilities understand the content in an easy
manner. To enforce good heading levels for a document, the A11yFirst editor programmatically restricts
heading level selection. Accessibility requirements for heading levels are that Heading levels should
convey consistent structure in the document according to the following rules:

1) The level of the first heading should be the highest level permitted in the document.
2) If the highest level permitted is Level 1, there should typically be only one heading of that level.
3) Any subsequent heading should have either the same level (unless that would violate the multiple

use restriction for Level 1), a higher level (again, avoiding the multiple use restriction for Level 1),
or the next-lower level (without skipping any levels) in relation to the heading that precedes it.

[Figure] Heading Restriction for Structured Document

16

17

AllyFirst Editor 1.0

= = o= R R ORE- | BeckForms - | B Sounce

g B - B I I, woesyw -|)

=

. Privileges- Borrowing (Heading Level 1)
ser Group (Heading Level 2)

I, Rt il

HEsD

[Tips for Borrowing| (Headling Level 2)

= After you S0l up your

i OF The COlgC 0n B0 'wifachi f badongs

j sy ey changid for rvacduod recalls, idaraes, madia and loanabls &

tochrology, and lost

i 8 prnanly for Esculty, stalf, and shudents curantly emploped By o enrolled ot U of | See ouf page on Mam Sacks

Recalls(Heading Lewvel 2)

H somecne meeds an item you cumently have chacked out and there & not 3

trar Copy Fvaiabdn, thon your boan pericd can be shormensd io ¥ weoks. Thisis

oo Ty new o dabe and 1o romend you thad you will b Sred if the iem 5 retumaed

calied @ “recall” If an dom &5 recaled you will racer 3 Bhrany notoo to b

wer[]

[Caption: This image demonstrates that author has choice of only heading level two or three because
selected heading level is level 2. Heading level 2 with checkmark indicates the current heading
level.See also disabled(grayed out) heading level 1and level 4 to prevent skipping the heading level.]

2. Heading Menu Features

e The Heading menu only enables the allowed heading levels, based on the position of the cursor
in the document, to support proper nesting of headings.

e If the cursor is in a block of text that is not already a heading, selecting one of the enabled
heading levels in the menu will convert the block to a heading of that level.

e |[f the cursor is on a heading, the menu item with a checkmark indicates its current level.
Additional menu items that correspond to any allowed changes to the current level are enabled.

e When the cursor is on a heading, selecting the Remove format menu item, or selecting the current
level menu item, converts the heading block to a plain text paragraph.

3. Using Heading Levels

1) Heading levels identify the structural relationships between sections of content in a document.

2) Higher-level headings (Levels 1 and 2) identify the main topics of a document and lower-level
headings (Levels 3, 4, 5 and 6) identify subsections of the document.

3) A subsection is identified by using the next lower-level heading. For example, subsections of

Level 2 headings use Level 3 headings, subsections of Level 3 headings use Level 4 headings,
and so on to Level 6 headings.

18

4) Break content into subsections when there are two or more ideas or concepts that correspond to
the topics covered in the section. Use headings of the same level to label each subsection.

5) Heading levels should never be used for inline visual styling of content (e.g. larger or smaller font
size, bold or italic). Instead, use the "Inline Style" options.

3. Focus on Accessibility Education/Guidance

One of the goals of A11yFirst Editor is educating authors and users about the text editor so that they can
create accessible content both for visual readers and non visual readers. Therefore, the team added
accessibility information such as the importance of good heading structure and its usage as two of the
menu items. For example, the team tried to convey “Why Headings Are Important” as one option. Here is
heading plugin “help” information.

Why Headings Are Important

e The proper use and nesting of heading levels improves the ability of all users to find and read
information on a page.

e People read information more efficiently when content is broken up into digestible sections of
information, with headings identifying each section and subsection of information.

e Headings used consistently and in meaningful ways improve Search Engine Optimization
(SEO) for search engines like Google™, Bing™, DuckDuckGo™ and many others.

o When documents are created with properly nested headings, assistive technologies used by
people with disabilities can easily provide quick navigation to the various sections of content.

e Headings can also be used to generate a table of contents, which can provide an overview of
the document and quick navigation to sections of content.

One of the problems we found from usability testing is that authors did not notice this “help” menu under
“heading” menu. The team needs to enhance the user interface to make this section more discoverable.

18

19

AllyFirst Editor 1.0

Heading = || J= 32 #E & ™ | G PR SE- | Block Format ~ | [8) Source
Q b3 & @ B I L | mineste - | Q

Dociiment Title
Help b4

[
m
=

Features Usage Importance

Why Headings Are Important

» The proper use and nesting of heading levels improves the ability of all users to find
and read information on a page.

» People read information mere efficiently when content is broken up into digestable
nunc sections of infermation, with headings identifying each section and subsection of
rhan information.

meiue » Headings used consistently and in meaningful ways improve Search Engine
Optimization (SEQ) for search engines like Google™, Bing™, DuckDuckGo™ and
Dui ¢ many others.

turped * When documents are created with properly nested headings, assistive technologies
used by people with disabilities can easily provide quick navigation to the vanous
sections of content.

ma : : ;
» Headings can also be used to generate a table of contents, which can provide an

Sect overview of the document and quick navigation to sections of content.

DEC

Biben

nunc

Sectik “_
body K

A11yFirst Link Plugin

1. Core Idea

20

Context based link text to website URLs or to document objects are more useful. Authors should avoid
non informative link phrases such as: Click Here, Here, More, Read more, Link to [some link destination],
Info. Also using URLSs as links can present two types of challenges, readability and length.*

By default, CKEditor allows the user to create a link with an empty Display Text field. When this occurs,
CKEditor uses the URL specified for the link as the Display Text.

The modification we are proposing in A11yFirst link plugin is to check for an empty Display Text field in
the Link dialog, and when detected, warn the user with a Warning dialog that contains the following:

Title: Link: Warning

Message: The Display Text input field for the link is empty.
Radio button (1 of 2): Add text to input field

Radio button (2 of 2): Use URL as display text

OK button

2. User Flow and Warning Dialog Functionality

[Step 1] An author put a url with the display text, “click here.” The dialog box is brought up to inform the
author that he/she needs to improve URL display text for web accessibility.

4Links and Hypertext Appearance, http://webaim.org/techniques/hypertext/link_text
20

21

AllyFirst Plugins Demo

+ I A . B I 1T, 2 B8
Document Title
Link: Warning r Accessibility problem for URL display text o,

The :urrentlnlspla;' Text ("click here™jdoes not describe the target andfor purpose of the link,

Accessibility remedy recommendation

* Improve cufrent display text via A11yFirst Editor

lgnore warning, use current display text.

[Source] https://cdn.rawgit.com/a11yfirst/plugins-dev/feature/link/custom/index.html

21

22

[Step 2] An author chose to improve the display text, “click here.” Another dialog box is brought up to
change existing value of display text, “click here” and author can change the display text to improve
accessibility for who using the screen reader.

Allykirst Plugins Demo

Q k5 X% m | B I I {
Document Title
Link b4
Section 1
Link Info Target Advanced
Bring about a dialog box for the
Display Text author to modify the display text
chick here ||
Link Type
URL v
Protocol URL
170 A google.com

[Source] https://cdn.rawgit.com/a11yfirst/plugins-dev/feature/link/custom/index.html

Milestones

Strategic direction

e Using CKeditor checker functionality from CKsource
e Submit heading plugin as add-on to CKeditor — minimum viable product
e Links — you have headings as anchor link target

22

23

e Use existing CKeditor checker for now to ensure accessibility (categories of checking [filter by
object such as heading or images] vs CKEditor checker is like a laundry list)
e Enhance existing CKeditor Ul

A11yFirst editor 1.0 - Completed

Heading + code management

Inline style

Block format (including block quotation)
Toolbar configuration (documentation re a11y)
Project Milestones 1.0

A11yFirst editor 1.1 - Completed

Dialog: empty link text with summary/detail help

Dialog: non-descriptive link text with summary/detail help
Help tab in link dialog

A11yfirst editor links include warning

A11yFirst editor 2.0 - In process

e A11yfirst image plugin specification:
o Revision of CKeditor image plugin to create a11yfirst image plugin
o Integration of a11yfirst image plugin to WordPress
o Project milestones 1.1 and 1.2
e A11yfirst tables plugin specification
e Enhance heading table of content, list of headings, revisiting the link dialog process, adding
context for links (ie. adding title)

A11yFirst editor 2.X - Upcoming

e “Paste from Word”: how this works with accessible authoring (paste from pdf, google doc)

Library WordPress CMS Deployment

Schedule for Staged Deployment

A Library WordPress test serveron which A11yFirst editor will be deployed was set up. The schedule for
deployment was discussed. Currently, production deployment was scheduled on after the fall semester
2017 and during winter break to minimize disruption and to start as a clean slate. The team will take the
approach of staged deployment, starting the deployment from the A11yFirst WordPress server, then to
Library WordPress CMS development server, then to WordPress stage server and finally the WordPress
production server.

23

http://a11yfirst-wp.library.illinois.edu/

24

Requirement by Library Wordpress CMS

Must Have Features

e Reduce list of special characters
o Remove letters and numbers when English is the default language
e Add paragraph justify toolbar buttons (add after block format button)

o Left
o Right
o Center

e Block Format Button
o Button Labeling "Paragraph Format"
o Options
m Blockquote
m Preformatted (<pre> tag)
= Add "Normal text"
e Heading Menu
o Issues: People don't understand why H1 is disabled
o Changes: "Remove Format" -> "Normal Text"
e Image ALT text checking
o Check document on insert for ALT text
o This is a plugin that only allows editing of ALT text
e Accessibility Checker

Nice To Have Features

e Language change button
e Link Checker
o Use of a URL as display test
o Use of poor display test (e.g. click here)
e List style options
o No-bullet
o Extra line spacing
o Highlight (colors and border)
e Paragraph
o Highlight (colors border options)

Usability Testing

Introduction

Traditional usability testing focuses on end users and a waterfall-compatible method which offers the
same interface to at least five users per audience at the same time. However, this project had five
additional usability-related challenges to face:

25

Creator / author experience, not “user” experience: The A11yFirst project focus was on
contributing-level content creator experience rather than “traditional” viewer-level user experience.
Creator-specific experience is often given short shrift in the spectrum of usability, accessibility, and quality
assessment tools and methodology, because there will always be more system viewer-type users than
creator-type users. There is comparatively less guidance in this field, so we’re assessing a less-studied
area.

The Innovation Fund’s support for A11yFirst enabled attention to be paid to this critical and often
underserved group.

Struggling creators don’t create (or maintain) content well: In his book Author Experience, Rick
Yagodich observes, “A difficult-to-use environment encourages [end users] to go elsewhere to fulfill their
needs. If they have no choice but to use our poorly implemented system, they will become frustrated,
leading to a combination of sloppy use and negative reputation.... Authors are users too; the same
psychological consequences apply to them. ...We cannot afford to use a platform that frustrates authors
and keeps them from developing high-quality content.” (p. 19)

This is sometimes referred to as “mental friction.” The harder it is to use a system and the more
expectation-breaking hiccups a user experiences, the less frequently the system content will be updated.

It's hard enough to have creators keep content up to date and consistent in a friction-free system that
complies seamlessly with creator’s expectations. However, part of the A11yFirst mandate is to change
both expectations and behavior in a way that produces an improved accessibility outcome. Changing
long-established interaction behavior without creating struggle-and-resistance-inducing levels of mental
friction is a fine needle to thread.

Everyone comes in to an editor interface with their own (differing) habits: That hypothetical
“friction-free but behaviorally-changed and more-accessible system” is even more challenging to find in a
world where Google and Microsoft have set user expectations for 20 years.

If A11yFirst had been inventing a brand new style of interface that no one had seen before, people would
have learned it independently of their background experience and would approach it with fewer ingrained
behaviors. However, nearly every content creation system offers a WYSIWYG editor interface -- and most
of them have evolved to have a great deal of similarity in behavior, shortcuts, and organization over the
years.

WYSIWYG editors also offer several ways to do any one thing. In our first six usability assessments,
every single user displayed a new interaction method that none of the others had shown. So there are a
lot of interaction methods to (carefully) adjust.

Not all the interface elements could be adapted: Because the A11yFirst project is built upon the
existing CKEditor interface, the team was working within constraints imposed by the existing system in
the interest of improving an editor with a substantial number of installations. Some adaptations could be
made locally; others would need to be transferred to the CKEditor project itself for consideration.

Agile development means the interface changes quickly and responsively: When performing
observational usability assessments, the traditional gold standard promoted by Nielsen et al is to watch
five users interacting with the same interface. However, agile development cycles modify the interfaces so

25

26

quickly that it's not possible to follow this guidance. We’ve modified the procedure to refine our tests in
sync with agile interface development and added a time dimension to our observation tracking so that we
can discover whether newer developments have improved user experience with trouble spots.

Design

Dena Strong, a senior information design specialist with Technology Services, works with the Research
Data Service four hours a week to foster cross-campus collaboration and communication and to help
Technology Services support the RDS mission. With the approval of Dr. Heidi Imker of the Research Data
Service and Janet Jones of Technology Services, some of her RDS time was offered to the A11yFirst
project for usability assessment design, execution, and analysis.

During the development of the lllinois Data Bank, she created an agile-adapted version of usability
assessments for the dataset contribution and API interfaces, and this agile model of usability assessment
was used for the A11yFirst project as well.

Several methods of user experience testing were employed during the evaluations:

Heuristic analysis: The interface was reviewed against behavioral standards for internal
consistency, and issues identified were divided by the team into A11yFirst-specific or
CKEditor-specific issues.

(For example: Many embedded elements like images and links can be double-clicked to launch a
more detailed properties-editing view. With that behavioral standard established by the interface,
the lack of a double-click editing option for tables was noted at heuristic analysis, and reinforced
by testers who encountered the same issue.)

Comparative analysis: WYSIWYG editors are common enough to have acquired their own
acronym. In order to reduce a user’s experience of mental friction, designers need to identify not
only formally-created design standards but informally-established design “patterns” of the way
people will expect an interface to behave -- things like iconography, menu language and contents,
and click patterns.

(For example: Faced with design decisions to make about interface labels or format removal
behavior, a side by side comparison of the way Microsoft, Google, Box, and several other major
providers handle the same issue can identify where people will arrive with strong expectations of
standard behavior that will be hard to modify, or where different providers have made different
decisions and users will have fewer pattern expectations.)

Video-mediated usability assessments: Watching how users interact with the system, noting
points of confusion or hesitation, and asking for their thoughts on how the system behaves is a
classic usability study method. We designed three phases to the test, with different specific tasks
in each phase: Exploration of the interface; content creation involving a simplified page structure
with headlines, bullets and links; and recreation of an existing real page in the Library’s site.

The simple test page’s structure helped to compare different user’'s behavior with the same
content and to focus user’s attention on the interface elements that had received

26

27

accessibility-specific modification. The real page recreation test helped us to identify an
assortment of real-world scenarios that the simplified test page wouldn’t cover, such as complex
layouts and content types.

(For example: Some of our test users had picked up keyboard shortcuts offered by the Library
WordPress editor that weren’t available in the A11yFirst demonstration system, and some of
those shortcuts were used at the level of reflex. When asked to recreate what he’d just done, one
tester couldn’t consciously identify what he was trying to do in the test editor until he launched a
Library WordPress window and established that the keyboard interaction he’d attempted did work
there. An interview method without observing his hands on the keyboard wouldn’t have captured
that pattern.)

Process

Before the video-mediated assessments began, the team discussed which elements were critical to
assess, which hadn’t yet been modified for accessibility improvements, and what the team hoped to
accomplish with both obvious and subtle accessibility improvements in the interface.

Six Library staff members with different levels of familiarity with the current WordPress editor interface
agreed to perform usability assessments of the A11yFirst editor interface at its current state of
development. We performed one assessment per week between July 5 and August 9, occasionally
modifying the “sample text” phase of the assessment to adjust user's attention to the area of the interface
that was of particular interest to the developers.

During each assessment, our volunteers provided background information about themselves and their
familiarity with content editing systems, walked through the established tasks with Strong’s guidance as a
facilitator, and provided an exit interview to gather their final thoughts and suggestions for improvement.
In order to allow the developers and other usability-interested people to observe the tests without
crowding the room, a Skype for Business connection was established to allow for quiet and unobtrusive
observation.

At the end of each test, the video recordings were processed and stored in Box for future reference and
discussion, along with the observer's’ notes. Specific observations were captured in an Excel spreadsheet
to explore what percentage of users encountered particular confusion points, wished for certain
behaviors, or expressed certain expectations.

Findings

As a result of the usability testing, we found places where icons didn't make sense, phrasing confused
people, and interactions were inconsistent and confusing, giving us the ability to address them in sprints
before initial release. We also found places where people sometimes chose to ignore the accessibility
suggestions and guidelines provided by the editor. Usability testing gives us the ability to adjust our
approach, our explanations, and our implementation in order to sometimes encourage and sometimes
enforce greater compliance.

27

28

Future Usability Testing Plans

As the project’s development work continues with other areas of interface design, we will refine the
usability testing to focus on specific elements, allowing the usability testing to reveal unanticipated
shortcomings of the A11yFirst editor.

Ongoing Evolution

Project Resources

The A11yFirst Project funding for a student employee will be provided by Disability Resources &
Educational Services for the remainder of the year. Eventually, A11yFirst project will be transformed into
an open source project in Github source repository.

Continuous Improvement

Continuous improvement is “the ongoing improvement of products, services or processes through
incremental improvements”. Among the most widely used tools for continuous improvement is a four-step
quality model — the plan-do-check-act (PDCA) cycle, also known as the Deming Cycle or Shewhart
Cycle. As the project team approaches next project milestone, more usability testing will be undertaken.

Collaboration with the School of Information Science

The project team will work with the School of Information Science to further user research on the
A11yFirst Editor's conceptual model. The project team has already recruited graduate students to work on
user research for the A11yFirst editor under the supervision of Dr. Twidale, a professor at the School of
Information Science.

Collaboration with Other Campus Units

As the project team make progress on the A11yFirst editor, the project team are also planning to work
with various campus units so that they can adopt the A11yFirst editor into their content management
systems, including both WordPress and Drupal content management systems. The first target is the
publish.illinois.edu services, which uses WordPress to provide a campus wide web service.

Collaboration with CKsource

The A11yFirst editor is based on API code from CKsource. The Project team has been gathering valuable
research and usability testing data to submit as feedback to CKSource. We are hopeful CKsource may
integrate this project deliverables into the CKSource core, ensuring accessible content creation via
CKEditor. In this way, the A11yFirst Editor would be able to improve accessibility beyond the Library’s
WordPress CMS and achieve a global impact.

28

http://docs.cksource.com/ckeditor_api/
http://asq.org/learn-about-quality/project-planning-tools/overview/pdca-cycle.html
https://publish.illinois.edu/

29

Project Websites

A11yFirst Editor Demo

http://a11yfirst.library.illinois.edu/ (Includes demo of text editor, code repo and brief project info)

A11yFirst Project Documentation

https://publish.illinois.edu/a11yfirst/ (includes project documentation, meeting minutes, design
specification)

Original Proposal

From Remediation to Proliferation - Mainstreaming the accessibility of \WWeb Resources

Project Expense

As of August 2017, total remaining project funds were $6092.69. $1881.68 was spent on student
employees and academic hourly employees for the last payroll time period. $3832.17 was allotted to
facilitate the project’s presentation in Westminster, Colorado by three presenters. $365.36 was used to
prepare project marketing materials distributed at the conference. The above figures are preliminary until
all expenses are processed and posted to University Banner system, according to the University’s Library
Business office.

The majority of project expense was payroll for five student employees and three academic hourly
employees, support for project outreach and marketing, conference attendance and presentation. Other
miscellaneous expenses included gift cards for 36 usability testing sessions and a dinner meeting with
Matt King of Facebook, the renowned accessibility guru, of keynote speaker at the University of lllinois
Web Conference 2017.

Credits

First, | would like to thank the member of the University Library Executive Committee who made this
project possible. This project established a strong foundation for innovating accessible content authoring
practice on the web. The University Library Business and Human Resources Office also helped the
project along the way, processing all the expenses and student hires.

| would like to give special thanks to Robert Slater(Technical Architect for Web Content, University Library
IT), Mike Scott, (Director, Dept of Human Services, State of lllinois), Tim King, (Graphic Designer),
Candice Woodrum and Susan Edwards (University Library Business office), Aneitre Johnson (University
Library Human Resources office) and Kim Matherly(Administrative Assistant to the University Librarian
and Dean of Libraries).

29

https://publish.illinois.edu/a11yfirst/
http://a11yfirst.library.illinois.edu/
http://www.library.illinois.edu/committee/exec/innovation_fund/innovation_fund_proposals/2015-2016/Ku_Gunderson_Weathers_InnovationFundProposalFinalDec2315.pdf

30

Appendix

Presentation

Jaeun Ku, Why Conceptual Modeling? A Case Study of A11Y First Text Editor
Annual Library Research Showcase, 2016
https://www.ideals.illinois.edu/handle/2142/95061

Workshop

Jon Gunderson, Open source Accessibility Tools, HighEdWeb 2017 Hartford, CT
*Dr. Gunderson will talk about A11yFirst Editor as one of open source accessibility tools at the conference

Accepted Conference Proposal

Conference : Accessing Higher Ground By Association on Higher Education and Disability(AHEAD),
Westminster, Colorado 2017

Title: A11yFirst for CKEditor: Support Creation of Accessible Web Documents through User Interface
Enhancements

Speakers: Jon Gunderson, JaEun Jemma Ku, and Dena Strong

Summary (350 characters max, including spaces)

CKeditor is a popular WYSIWYG editor using in web based Content Management Systems (CMS) like
Drupal, Moodle, Blackboard and Desire2Learn. The A11yFirst project has redesigned and enhanced the
user interface controls for use in CKEditor to support accessible authoring and document creation.

Abstract (1000 characters max, including spaces)
Most web content is made by people using web based WYSIWYG editors Embedded in content
management systems like blogs, learning managements systems, and administrative websites. These
users have little understanding of accessibility or the technical details of HTML accessibility. Embedded
WYSIWYG editors like CKEditor often include accessibility checkers as an optional feature, but this
requires an intentional action on the part of author to use them. The checker approach reinforces the
remediation stereotype for accessibility, which is also extra work for the author. In contrast, the a11yFirst
project changes the user interface features to guide authors in creating accessible content as they create
documents. A11yFirst supports the creation of structured documents and providing just-in-time
information on accessibility. The A11yFirst plug-ins are open source and can be used to upgrade current
installations of CKEditor to improve accessible authoring.
Key Points

1. Accessible authoring versus accessibility remediation

2. User interface features that support and encourage accessible authoring

30

https://www.ideals.illinois.edu/handle/2142/95061

31

3. Support features to help authors understand accessibility

Submitted Conference Proposal

Conference : University of Illinois WebCon 2018
http://webcon.illinois.edu/

1. Presentation Title
Designing for Accessibility: Changing Users’ Mental Models

2. Presentation Description (100-150 words)

This presentation is about design methodologies and how they interact with and impact development
processes, and how design must sometimes compete with mental models that users may already be
familiar with.

We will offer insights into how we dealt with the tension between usability testing focused on an agile
development process, where user feedback may suggest specific design alterations, and a more
goal-oriented design process that began with the creation of a conceptual model, and was based on
interaction design principles and previous accessible text editor from State of Illinois.

As a case study, we will use the example of the A11yFirst project, which aims to support the creation of

structured, accessible documents by web content authors who are using an embedded WYSIWYG editor

within a content management system.

3. Presenters
JaEun Jemma Ku, Nicholas Hoyt, and Dena Strong

31

http://webcon.illinois.edu/

